【題目】下列說法中,正確的是 .
①任取x>0,均有3x>2x;
②當(dāng)a>0,且a≠1時,有a3>a2;
③y=( )﹣x是減函數(shù);
④函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
⑤若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
【答案】①、②
【解析】解:①當(dāng)x>0, =( )x>1,即恒有3x>2x;故①正確,②當(dāng)a= 時,滿足a>0,且a≠1時,但a3>a2不成立,故②錯誤,③y=( )﹣x=( )x為減函數(shù),故③正確,④函數(shù)f(x)=﹣ 時,滿足函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),但f(x)不是單調(diào)函數(shù),故④錯誤;⑤當(dāng)a=0時,滿足函數(shù)f(x)=ax2+bx+2=2與x軸沒有交點,此時b2﹣8a<0且a>0不成立,故⑤錯誤;⑥當(dāng)x<0時,y=x2﹣2|x|﹣3=x2+2x﹣3,此時函數(shù)的對稱性x=﹣1,則當(dāng)﹣1<x<0時,函數(shù)為增函數(shù),當(dāng)x≥0時,y=x2﹣2|x|﹣3=x2﹣2x﹣3,此時函數(shù)的對稱性x=1,則當(dāng)x≥1時,函數(shù)為增函數(shù),
即函數(shù)的遞增區(qū)間為[1,+∞)和[﹣1,0],故⑥錯誤,
所以答案是:①、②
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD與底面ABCD成30°角,E是PD的中點.
(1)點H在AC上且EH⊥AC,求 的坐標(biāo);
(2)求AE與平面PCD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船以每小時15 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1處,此時兩船相距20海里,當(dāng)甲船航行40分鐘到達A2處時,乙船航行到甲船的南偏西45°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知2件次品和a件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出a件正品時檢測結(jié)束,已知前兩次檢測都沒有檢測出次品的概率為 .
(1) 求實數(shù)a的值;
(2) 若每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線過點P(﹣3,1),且與x軸,y軸分別交于A,B兩點.
(Ⅰ)若點P恰為線段AB的中點,求直線l的方程;
(Ⅱ)若 = ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意 都有f(kx2)+f(2x﹣1)>0成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處。
(Ⅰ)求此時該外國船只與島的距離;
(Ⅱ)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行。為了將該船攔截在離島海里處,不讓其進入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.
(參考數(shù)據(jù): , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項為2,前n項和為Sn , 且 ﹣ = (n∈N*).
(1)求a2的值;
(2)設(shè)bn= ,求數(shù)列{bn}的通項公式;
(3)若am , ap , ar(m,p,r∈N* , m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com