已知數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a2=3,4S2=S4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證數(shù)列{2an}是等比數(shù)列;
(3)求使得Sn+2>2Sn的成立的n的集合.
【答案】分析:(1)設(shè)數(shù)列{an}的首項(xiàng)為a1,公差為d,由題意得:,解方程可得
(2)要證明數(shù)列{為等比數(shù)列,只要證明依題為常數(shù)
(3)由(1)可求Sn,然后代入不等式Sn+2>2Sn,結(jié)合n∈N*可求n的值
解答:解:(1)設(shè)數(shù)列{an}的首項(xiàng)為a1,公差為d
由題意得:
解得:a1=1,d=2∴an=2n-1
(2)依題
數(shù)列{}是首項(xiàng)為2,公比為4的等比數(shù)列
(3)由a1=1,d=2,an=2n-1得Sn=n2

點(diǎn)評(píng):本題主要考查了利用等,差數(shù)列的基本量表示等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的求解,及利用定義證明等比數(shù)列的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=(  )
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=(  )
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案