【題目】直線l經(jīng)過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.
(1)求直線l的方程.
(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(+mx)(m∈R).
(Ⅰ)是否存在實數(shù)m,使得函數(shù)f(x)為奇函數(shù),若存在求出m的值,若不存在,說明理由;
(Ⅱ)若m為正整數(shù),當x>0時,f(x)>lnx++,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價格(單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當為何值時,銷售額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求證:BC⊥AF;
(2)求幾何體EF-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當a=1時,證明f(x)>f′(x)+ 對于任意的x∈[1,2]成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(a>0,β為參數(shù)).以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos =.
(1)若曲線C與l只有一個公共點,求a的值;
(2)A,B為曲線C上的兩點,且∠AOB=,求△OAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com