【題目】已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(﹣2015)+f(2016)的值為(
A.﹣2
B.﹣1
C.1
D.2

【答案】C
【解析】解:∵函數(shù)f(x)是R上的偶函數(shù),
∴f(﹣x)=f(x),
又∵對于x≥0都有f(x+2)=f(x),
∴T=2,
∵當(dāng)x∈[0,2)時,f(x)=log2(x+1),
∴f(﹣2015)+f(2016)=f(2015)+f(2016)=f(2×1007+1)+f(2×1008)
=f(1)+f(0)=log22+log21=1,
故選:C.
【考點精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則X的最大值是(
A.M
B.n
C.min{M,n}
D.max{M,n}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若全集U={1,2,3,4,5,6},M={2,3},N={1,3},則集合{4,5,6}等于(
A.M∪N
B.M∩N
C.(UM)∩(UN)
D.((UM)∪(UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.冪函數(shù)的圖象恒過(0,0)點
B.指數(shù)函數(shù)的圖象恒過(1,0)點
C.對數(shù)函數(shù)的圖象恒在y軸右側(cè)
D.冪函數(shù)的圖象恒在x軸上方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R,那么a2>b2是|a|>b的(
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從7本不同的書中選出4本,分別發(fā)給4名學(xué)生,每人一本.已知其中A、B兩本書不能發(fā)給學(xué)生丙,則不同的分配方法有(
A.720
B.600
C.480
D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】比較a,b,c的大小,其中a=0.22 , b=20.2 , c=log0.22(
A.b>c>a
B.c>a>b
C.a>b>c
D.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b﹣a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2﹣1)+(5﹣3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x﹣[x],其中x∈R.設(shè)f(x)=[x]{x},g(x)=x﹣1,當(dāng)0≤x≤k時,不等式f(x)<g(x)解集區(qū)間的長度為5,則k的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的(  )
A.充分條件
B.必要條件
C.充要條件
D.等價條件

查看答案和解析>>

同步練習(xí)冊答案