分析:由題設(shè)條件知,可以先求出函數(shù)的定義域,再研究函數(shù)的單調(diào)性,求出函數(shù)的值域,
解答:解:由題意
,解得0<x≤4,即函數(shù)的定義域是(0,4]
又
y1=logx是(0,4]上的減函數(shù),
y=是(0,4]上的減函數(shù)
∴
f(x)=logx+是(0,4]上的減函數(shù)
∴-2=f(4)≤f(x)
∴函數(shù)
f(x)=logx+的值域是[-2,+∞)
故答案為[-2,+∞)
點(diǎn)評(píng):本題考查求對(duì)數(shù)的定義域、值域,解題的關(guān)鍵是求出函數(shù)的定義域,再利用函數(shù)單調(diào)性的判斷規(guī)則判斷出函數(shù)的單調(diào)性,利用單調(diào)性求出值域,求定義域的規(guī)則:偶次根號(hào)下非負(fù),分母不為0,對(duì)數(shù)的真數(shù)大于0等,求函數(shù)的值域一般借助函數(shù)的單調(diào)性,本題用判斷的方法確定出函數(shù)在定義域上的單調(diào)性,熟練掌握一些基本函數(shù)的單調(diào)性是順利判斷的保障