已知實(shí)數(shù)x,y滿足條件,則目標(biāo)函數(shù)z=2x-y( )
A.有最小值0,有最大值6
B.有最小值-2,有最大值3
C.有最小值3,有最大值6
D.有最小值-2,有最大值6
【答案】分析:畫出不等式組表示的平面區(qū)域,目標(biāo)函數(shù)的幾何意義是直線z=2x-y縱截距的相反數(shù),結(jié)合圖象可得結(jié)論.
解答:解:畫出不等式組表示的平面區(qū)域如圖中陰影部分所示.
當(dāng)目標(biāo)函數(shù)z=2x-y過(guò)直線x=3與直線y=0的交點(diǎn)(3,0),目標(biāo)函數(shù)取得最大值6;
當(dāng)目標(biāo)函數(shù)z=2x-y過(guò)直線x=0與直線x-y+2=0的交點(diǎn)(0,2)時(shí),目標(biāo)函數(shù)取得最小值-2.
故選D.
點(diǎn)評(píng):本題考查線性規(guī)劃知識(shí)的運(yùn)用,解題的關(guān)鍵是正確畫出不等式組表示的平面區(qū)域,明確目標(biāo)函數(shù)的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿足
x-y+2≥0
x+y-2≤0
y≥0
 (x∈z,y∈z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線,則不同直線的條數(shù)是( 。
A、14B、19C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+2≥0
x+y-2≤0
y≥0
,每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),則過(guò)這些點(diǎn)中的其中兩個(gè)點(diǎn)可作
 
條不同的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省許昌市三校高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知實(shí)數(shù)x、y滿足 (x∈z,y∈z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線,則不同直線的條數(shù)是( )
A.14
B.19
C.36
D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省嘉興市海鹽縣元濟(jì)高級(jí)中學(xué)高考全真壓軸數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知實(shí)數(shù)x,y滿足,每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),則過(guò)這些點(diǎn)中的其中兩個(gè)點(diǎn)可作    條不同的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省期末題 題型:單選題

已知實(shí)數(shù)x,y滿足(x∈Z,y∈Z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線,則不同直線的條數(shù)是
[     ]
A.14
B.19
C.36
D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案