(1)已知函數(shù)f(x)=x+
2
x
,x∈[1,5],求f(x)的值域;
(2)已知函數(shù)f(x)=22x-
5
2
.2x+1-6
,,其中x∈[0,3],求f(x)的最大值和最小值.
分析:(1)由f(x)=x+
2
x
2
x•
2
x
=2
2
,能求出f(x)=x+
2
x
在x∈[1,5]上的最小值2
2
,由函數(shù)f(x)=x+
2
x
,x∈[1,5]在[1,2
2
]上是減函數(shù),在[2
2
,5
]上是增函數(shù),能求出f(x)在x∈[1,5]上的最大值.
解答:解:(1)∵x∈[1,5],
∴f(x)=x+
2
x
2
x•
2
x
=2
2

當且僅當x=
2
x
,即x=
2
時,f(x)=x+
2
x
取最小值2
2
,
∵函數(shù)f(x)=x+
2
x
,x∈[1,5]在[1,2
2
]上是減函數(shù),在[2
2
,5
]上是增函數(shù),
f(1)=1+
2
1
=3
,f(5)=5+
2
5
=
27
5
,
∴f(x)的值域是[2
2
,
27
5
].
(2)∵f(x)=22x-
5
2
.2x+1-6

=(2x2-5•2x-6
=(2x-
5
2
2+
1
4
,
∵x∈[0,3],
∴2x∈[1,8],
∴當2x=
5
2
時,f(x)min=
1
4
;
當2x=8時,f(x)max=(8-
5
2
)2+
1
4
=
61
2

故f(x)的最大值是
61
2
,最小值是
1
4
點評:本題考查指數(shù)型復合函數(shù)的性質和應用,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
①試求直線PQ的斜率kPQ的取值范圍;
②求f(x)圖象上任一點切線的斜率k的范圍;
(2)由(1)你能得出什么結論?(只須寫出結論,不必證明),試運用這個結論解答下面的問題:已知集合MD是滿足下列性質函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①當D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
②當D=(0,
3
3
)
,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
(2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=
x+3(x≤0)
2x(x>0)
,則f(f(-2))為
2
2
;
(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個不同點關于直線y=x對稱,求實數(shù)p的取值范圍;
(3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質:在區(qū)間(0,
1
e
]
上單調遞減,在區(qū)間[
1
e
,1)
上單調遞增.解題過程中可以利用;②將根據提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內是連續(xù)函數(shù),數(shù)列{an}通項公式為an=
1
an
,則數(shù)列{an}的所有項之和為1.
(2)過點P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個.
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號)

查看答案和解析>>

同步練習冊答案