【題目】已知函數(shù)f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六個不同的實(shí)數(shù)解,則3a+b的取值范圍是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

【答案】D
【解析】解:作函數(shù)f(x)= 的圖象如下,

∵關(guān)于x的方程f2(x)﹣af(x)+b=0有6個不同實(shí)數(shù)解,

令t=f(x),

∴t2﹣at+b=0有2個不同的正實(shí)數(shù)解,

其中一個為在(0,1)上,一個在(1,2)上;

,

其對應(yīng)的平面區(qū)域如下圖所示:

故當(dāng)a=3,b=2時,3a+b取最大值11,

當(dāng)a=1,b=0時,3a+b取最小值3,

則3a+b的取值范圍是(3,11)

故選:D

作函數(shù)f(x)= 的圖象,從而利用數(shù)形結(jié)合知t2﹣at+b=0有2個不同的正實(shí)數(shù)解,且其中一個為1,從而可得﹣1﹣a>0且﹣1﹣a≠1;從而解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2+x>0},集合B= ,則(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x3﹣(1+ )x2+2bx在區(qū)間[3,5]上不是單調(diào)函數(shù),則函數(shù)f(x)在R上的極大值為(
A. b2 b3
B. b﹣
C.0
D.2b﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDA1B1C1D1為正方體,下面結(jié)論錯誤的是 (  )

A. BD∥平面CB1D1 B. AC1BD

C. AC1⊥平面CB1D1 D. 異面直線ADCB1所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣(2a+1)x+lnx(a∈R) (Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2ax,若g(x)有兩個極值點(diǎn)x1 , x2 , 且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=

∠ACD=90°∠EAC=60°,AB=AC=AE.

(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請證明你的結(jié)論.

(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點(diǎn)D,問如何在BC上找到一點(diǎn)M,使得兩條小路AC與DM相互垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,給出以下四個結(jié)論:

①D1C∥平面A1ABB1;②A1D1與平面BCD1相交;

③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.

其中正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)學(xué)生的視力,教室內(nèi)的日光燈在使用一段時間后必須更換.已知某校使用的100只日光燈在必須換掉前的使用天數(shù)如下表:

天數(shù)/

151180

181210

211240

241270

271300

301330

331360

361390

燈管數(shù)/

1

11

18

20

25

16

7

2

(1)試估計(jì)這種日光燈的平均使用壽命;

(2)若定期更換可選擇多長時間統(tǒng)一更換合適?

查看答案和解析>>

同步練習(xí)冊答案