若直線a∥平面a,直線b⊥直線a,則直線b與平面a的位置關系是( ▲ )
(A)b∥a (B)bÌa (C)b與a相交 (D)以上均有可能
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:數(shù)學教研室 題型:013
A.若直線m、n都平行平面a ,則m∥n
B.設a-l-b 是直二面角,若直線m⊥l,則m⊥b
C.若直線m、n在平面a內的射影依次是一個點和一條直線,且m⊥n,則n在a 內或n與a 平行
D.設m,n是異面直線,若m與平面a 平行,則n與a 相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知直三棱柱中, , , 是和的交點, 若.
(1)求的長; (2)求點到平面的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3
第二問中,利用面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 …………… 5分
(2)在面BBCC內作CDBC, 則CD就是點C平面ABC的距離CD= … 8分
(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB
CHE為二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分
解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h(huán)) ……… 4分
·=0, h=3
(2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)
點A到平面ABC的距離為H=||=……… 8分
(3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小滿足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
給出下面的四個命題:
(1)兩個側面為矩形的四棱柱是直四棱柱;
(2)平行六面體ABCD-A1B1C1D1中,
(3)若直線m//平面直線n//平面,并且
(4)平面直線若
其中正確的命題的個數(shù)是
A. 1 B. 2 C .3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com