數(shù)列1,2+
1
2
,3+
1
2
+
1
4
,4+
1
2
+
1
4
+
1
8
,…的前n項(xiàng)和Sn=
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出an=n+1-
1
2n-1
,由此利用分組求和法能求出結(jié)果.
解答: 解:由題意知an=n+
1
2
+
1
4
+
1
8
+…+
1
2n-1

=n+
1
2
(1-
1
2n-1
)
1-
1
2

=n+1-
1
2n-1
,
∴Sn=(1+2+3+…+n)+n-(1++
1
2
+
1
4
+…+
1
2n-1

=
n(n+1)
2
+n+
1
2
(1-
1
2n-1
)
1-
1
2

=
1
2
n2+
3
2
n+2-
1
2n-1

故答案為:
1
2
n2+
3
2
n+2-
1
2n-1
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意分組求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商店經(jīng)營(yíng)一批進(jìn)價(jià)為每件5元的商品,在市場(chǎng)調(diào)查時(shí)發(fā)現(xiàn),此商品的銷售單價(jià)x與日銷售量y之間有如下關(guān)系:
x5678
y10873
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)求x,y之間的線性回歸方程.(參考數(shù)據(jù):
4
i=1
xiyi-4
.
x
.
y
=-11,
4
i=1
xi2-4
.
x
2=5,
4
i=1
yi2-4
.
y
2=26)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,a1=1公差d≠0,Sn為其前n項(xiàng)的和,若a1,a2,a5成等比數(shù)列,S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

變量x,y滿足
x=
t
y=2
1-t
(t為參數(shù)),則代數(shù)式
y+2
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平行四邊形ABCD中,E是BC的中點(diǎn),G為AC與DE的交點(diǎn),若
AB
=
a
AD
=
b
,則用
a
b
表示
BG
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+
y2
9
=1,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1+mx2
x
在區(qū)間[1,2]上是增函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
y2
25
+
x2
16
=1的焦點(diǎn)坐標(biāo)為(  )
A、(0,±3)
B、(±3,0)
C、(0,±5)
D、(±4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=sin(2x-
π
6
)的圖象,只需把正弦曲線y=sinx上所有點(diǎn)( 。
A、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
C、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變
D、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

同步練習(xí)冊(cè)答案