【題目】已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上各取兩個點,其坐標分別是,,

)求,的標準方程.

)過點的直線與橢圓交于不同的兩點,,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

【答案】1,2

【解析】

(1) 根據(jù)題意布列關(guān)于待定系數(shù)的方程組,解之即可;

(2) 設(shè)直線lykx+2,Ax1,y1),Bx2,y2),由,得(1+4k2x2+16kx+120,由此利用根的判別式、韋達定理、向量的數(shù)量積,結(jié)合已知條件能求出直線l的斜率k的取值范圍.

解:()由題意拋物線的頂點為原點,

所以點一定在橢圓上,且,則橢圓上任何點的橫坐標的絕對值都小于等于,

所以也在橢圓上,,,故橢圓標準方程,

所以點、在拋物線上,且拋物線開口向右,其方程,,,

所以方程為

)①當直線斜率不存在時,易知三點共線,不符題意.

②當斜率存在時,設(shè),,,

,

,

,

,

,,

,

,

,

,

,

,

綜上:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).

1)求的值;

2)不等式上恒成立,求實數(shù)的取值范圍;

3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,用四種不同的顏色給圖中的A,BC,DEF,G七個點涂色,要求每個點涂一種顏色,且圖中每條線段的兩個端點涂不同顏色,則不同的涂色方法有(

A.192B.336C.600D.以上答案均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓, 在拋物線上,圓過原點且與的準線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點,點(與不重合)在直線上運動,過點的兩條切線,切點分別為, .求證: (其中為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是矩形,,,且.

(1)求證:平面平面

(2)設(shè)的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意,函數(shù)滿足:,,數(shù)列的前15項和為,數(shù)列滿足,若數(shù)列的前項和的極限存在,則________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點及圓.

1)若直線過點且被圓截得的線段長為,的方程;

(2)求過點的圓的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過的直線交拋物線于兩點

(1)若以,為直徑的圓的方程為,求拋物線的標準方程;

(2)過,分別作拋物線的切線,證明:,的交點在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

同步練習冊答案