【題目】設函數(shù)f(x)的定義域D,如果存在正實數(shù)m,使得對任意x∈D,都有f(x+m)>f(x),則稱f(x)為D上的“m型增函數(shù)”.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x﹣a|﹣a(a∈R).若f(x)為R上的“20型增函數(shù)”,則實數(shù)a的取值范圍是( 。
A.a>0
B.a<5
C.a<10
D.a<20

【答案】C
【解析】解:∵函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x﹣a|﹣a(a∈R),
∴f(x)=,
∵f(x)為R上的“20型增函數(shù)”,
∴f(x+20)>f(x),
當x=0時,|20﹣a|﹣a>0,解得a<10.
∴實數(shù)a的取值范圍是a<10.
故選:C.
【考點精析】掌握函數(shù)的值是解答本題的根本,需要知道函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】:實數(shù)滿足,其中; :實數(shù)滿足.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內企業(yè)的國際競爭力得到大幅提升.伴隨著國內市場增速放緩,國內有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設多個分支機構,需要國內公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機調查了位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計

合計

/p>

(Ⅰ)根據(jù)調查的數(shù)據(jù),是否有以上的把握認為“是否愿意被外派與年齡有關”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排名參與調查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為,求的概率

參考數(shù)據(jù):

(參考公式:,其中).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不同直線m,n和不同平面α,β,給出下列命題:
, ② , ③m,n異面,④
其中假命題有:( 。
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的圖象關于直線x=對稱,它的周期是π,則以下結論正確的個數(shù)( 。
(1)f(x)的圖象過點(0,
(2)f(x)的一個對稱中心是(,0)
(3)f(x)在[,]上是減函數(shù)
(4)將f(x)的圖象向右平移|φ|個單位得到函數(shù)y=3sinωx的圖象.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
(Ⅰ)求動點P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當λ=4時,記動點P的軌跡為曲線D.F,G是曲線D上不同的兩點,對于定點Q(﹣3,0),有|QF||QG|=4.試問無論F,G兩點的位置怎樣,直線FG能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , 分別為 的中點.

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心坐標,直線被圓截得弦長為。

(Ⅰ)求圓的方程;

(Ⅱ)從圓外一點向圓引切線,求切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左焦點,若橢圓上存在一點,滿足以橢圓短軸為直徑的圓與線段相切于線段的中點.

(1)求橢圓的方程;

(2)過坐標原點的直線交橢圓 兩點,其中點在第一象限,過軸的垂線,垂足為,連結并延長交橢圓,求證: .

查看答案和解析>>

同步練習冊答案