【題目】定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點,例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點,若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m的取值范圍是( )
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)
【答案】B
【解析】解:∵函數(shù)f(x)=﹣x2+mx﹣1是區(qū)間[﹣1,1]上的平均值函數(shù), ∴關于x的方程x2﹣mx﹣1= 在(﹣1,1)內有實數(shù)根.
由x2﹣mx﹣1= ,得x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.
又1(﹣1,1)
∴x=m﹣1必為均值點,即﹣1<m﹣1<1,∴0<m<2.
∴所求實數(shù)m的取值范圍是0<m<2.
故選:B.
【考點精析】認真審題,首先需要了解函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法).
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC,|AB|=8,AC與BC邊所在直線的斜率之積為定值m,
(1)求動點C的軌跡方程;
(2)當m=1時,過點E(0,1)的直線l與曲線C相交于P、Q兩點,求P、Q兩點的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調查,某城市的一種小商品在過去的近20天內的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80﹣2t(件),價格近似滿足于 (元).
(Ⅰ)試寫出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)表達式;
(Ⅱ)求該種商品的日銷售額y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=4與x軸負半軸的交點為A,點P在直線l: x+y﹣a=0上,過點P作圓O的切線,切點為T.
(1)若a=8,切點T( ,﹣1),求直線AP的方程;
(2)若PA=2PT,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為整數(shù)的數(shù)列滿足,,前6項依次成等差數(shù)列, 從第5項起依次成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求出所有的正整數(shù)m ,使得.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com