【題目】設橢圓E: 的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1 , F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.
【答案】
(1)解:∵橢圓E的焦距為1,∴ ,解得 .
故橢圓E的方程為
(2)解:設P(x0,y0),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),其中 .
由題設可知:x0≠c.則直線F1P的斜率 = ,直線F2P的斜率 = .
故直線F2P的方程為 .
令x=0,解得 .即點Q .
因此直線F1Q的斜率 = .
∵F1Q⊥F1P,∴ = .
化為 .
聯(lián)立 ,及x0>0,y0>0,
解得 , .
即點P在定直線x+y=1上
【解析】(1)利用橢圓的標準方程和幾何性質(zhì)即可得出 ,解出即可;(2)設P(x0 , y0),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),其中 .利用斜率的計算公式和點斜式即可得出直線F1P的斜率 = ,直線F2P的方程為 .即可得出Q .得到直線F1Q的斜率 = .利用F1Q⊥F1P,可得 = .化為 .與橢圓的方程聯(lián)立即可解出點P的坐標.
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號).
①當0<CQ< 時,S為四邊形
②當CQ= 時,S為等腰梯形
③當CQ= 時,S與C1D1的交點R滿足C1R=
④當 <CQ<1時,S為六邊形
⑤當CQ=1時,S的面積為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且圓心C在直線x+y-1=0上.
(1)求圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,現(xiàn)給出如下結(jié)論:
①; ②; ③; ④.
其中正確結(jié)論的序號為( )
A. ②③ B. ①④ C. ②④ D. ①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校數(shù)學系計劃在周六和周日各舉行一次主題不同的心理測試活動,分別由李老師和張老師負責,已知該系共有n位學生,每次活動均需該系k位學生參加(n和k都是固定的正整數(shù)),假設李老師和張老師分別將各自活動通知的信息獨立、隨機地發(fā)給該系k位學生,且所發(fā)信息都能收到,記該系收到李老師或張老師所發(fā)活動通知信息的學生人數(shù)為X.
(1)求該系學生甲收到李老師或張老師所發(fā)活動通知信息的概率;
(2)求使P(X=m)取得最大值的整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有直線和平面,則下列四個命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點為F,準線為l.過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com