已知(1+
2
i
2=a+bi(a,b∈R,i為虛數(shù)單位),則a+b=
A、-4B、4C、-7D、7
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)相等,求出a,b的值,然后利用復(fù)數(shù)的 幾何意義即可得到結(jié)論.
解答: 解:由(1+
2
i
2=a+bi得1+
4
i
-4=a+bi,
即-3-4i=a+bi,
則a=-3,b=-4,
解得a=1,b=2,
則a+b=-3-4=-7,
故選:C
點(diǎn)評:本題主要考查復(fù)數(shù)的基本運(yùn)算,利用復(fù)數(shù)相等求出a,b是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若非零向量
a
,
b
,滿足|
a
+
b
|=|
.
b
|,
a
⊥(
a
b
),則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若S4=S9,則a7=( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是平面內(nèi)兩個(gè)不共線的向量,
AB
=(a-1)
e1
+
e2
AC
=b
e1
-2
e2
(a>0,b>0),若A,B,C三點(diǎn)共線,則ab的最大值是( 。
A、
1
4
B、
1
2
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=an-2(n∈N+),它的前n項(xiàng)和為Sn,“a1=6”則是“Sn的最大值是S3”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題,其中真命題的個(gè)數(shù)是(  )
(1)相關(guān)系數(shù)r(|r|≤1),|r|值越大,變量之間的線性相關(guān)程度越高.
(2)命題p:?x∈R,x2-2x+3>0,則?p:?x∈R,x2-2x+3<0.
(3)若a,b為實(shí)數(shù),則0<ab<1是b<
1
a
的充分而不必要條件.
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin61°cos31°-cos61°sin31°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,若B=60°,a=(
3
-1)c.
(Ⅰ)求角A的大小;
(Ⅱ)已知△ABC的面積為12+4
3
,求函數(shù)f(x)=cos2x+asinx的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,銳角α,β的終邊分別與單位圓交于A、B兩點(diǎn).
(Ⅰ)如果點(diǎn)A的縱坐標(biāo)為
3
5
,點(diǎn)B的橫坐標(biāo)為
5
13
,求cos(α-β);
(Ⅱ)已知點(diǎn)C(2
3
,-2),
OA
OC
=2
2
,求α.

查看答案和解析>>

同步練習(xí)冊答案