【題目】設(shè)函數(shù)f(x)=x3 x2+6x+m.
(1)對于x∈R,f′(x)≥a恒成立,求a的最大值;
(2)若方程f(x)=0有且僅有一個實根,求m的取值范圍;
(3)當m=2時,若函數(shù)g(x)= + x﹣6+2blnx(b≠0)在[1,2]上單調(diào)遞減,求實數(shù)b的最大值.

【答案】
(1)解:f′(x)=3x2﹣9x+6,

x∈R,f′(x)≥a恒成立,即3x2﹣9x+(6﹣a)≥0恒成立,

∴△=81﹣12(6﹣a)≤0,解得:a≤﹣ ,

∴a的最大值是﹣


(2)解:由f′(x)=3(x﹣1)(x﹣2),

令f′(x)>0,解得:x>2或x<1,令f′(x)<0,解得:1<x<2,

∴f(x)極大值=f(1)= +m,f(x)極小值=f(2)=2+m,

故f(2)>0或f(1)<0時,方程f(x)=0僅有1個實數(shù)根,

∴m的范圍是(﹣∞,﹣ )∪(﹣2,+∞)


(3)解:∵g(x)= + x﹣6+2blnx(b≠0),

∴g′(x)=2x﹣ + ,

函數(shù)g(x)在[1,2]上單調(diào)遞減,則g′(x)≤0在[1,2]恒成立,

從而b≤ ﹣x2在[1,2]恒成立,令h(x)= ﹣x2,h′(x)=﹣ ﹣2x<0,

∴h(x)在[1,2]遞減,h(x)min=h(2)=﹣

故b的最大值是﹣


【解析】(1)求出f(x)的導數(shù),得到3x2﹣9x+(6﹣a)≥0恒成立,根據(jù)判別式△≤0,求出a的范圍即可;(2)求出f(x)的極大值和極小值,從而求出m的范圍即可;(3)求出g(x)的導數(shù),問題轉(zhuǎn)化為b≤ ﹣x2在[1,2]恒成立,求出 ﹣x2在[1,2]上的最小值即可.
【考點精析】本題主要考查了基本求導法則和利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導;一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線y2=4x的焦點為F,準線為l.已知點C在l上,以C為圓心的圓與y軸的正半軸相切于點A.若∠FAC=120°,則圓的方
程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:

①線性回歸方程 至少經(jīng)過點(x1,y1),(x2,y2),…,(xn ,yn)中的一個點;

②若變量之間的相關(guān)系數(shù)為 ,則變量之間的負相關(guān)很強;

③在回歸分析中,相關(guān)指數(shù) 為0.80的模型比相關(guān)指數(shù)為0.98的模型擬合的效果要好;

④在回歸直線中,變量時,變量的值一定是-7。

其中假命題的個數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鄭一號宇宙飛船返回艙順利到達地球后,為了及時將航天員救出,地面指揮中心的在返回艙預計到達的區(qū)域安排了同一條直線上的三個救援中心(記為).當返回艙距地面1萬米的點的時(假定以后垂直下落,并在點著陸),救援中心測得飛船位于其南偏東60°方向,仰角為60°救援中心測得飛船位于其南偏西30°方向,仰角為30°救援中心測得著陸點位于其正東方向.

1)求兩救援中心間的距離;

2救援中心與著陸點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列語句中是命題的有________,其中是真命題的有_____(填序號).

①“垂直于同一條直線的兩個平面必平行嗎?”②“一個數(shù)不是正數(shù)就是負數(shù)”;③“在一個三角形中,大角所對的邊大于小角所對的邊”;④“x+y為有理數(shù),x,y都是有理數(shù)”;⑤作一個三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,且a1=3,a2+a3=36.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}對任意的正整數(shù)n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量,若一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0,p0的值為 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3處取得極值,求常數(shù)a的值;

(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

同步練習冊答案