若函數(shù)f(x)=
1
1-x
,則函數(shù)f[f(x)]的定義域是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,建立不等式關(guān)系即可得到結(jié)論.
解答: 解:函數(shù)f(x)的定義域?yàn)閧x|x≠1},
則要使函數(shù)f[f(x)]有意義,則
1-x≠0
f(x)≠1
,
x≠1
1
1-x
≠1
,得
x≠1
x≠0
,
即x≠0且x≠1,
即函數(shù)的定義域?yàn)閧x|x≠0且x≠1},
故答案為:{x|x≠0且x≠1}
點(diǎn)評:本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程x2=4y,直線y=kx+m交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),且x1x2=-4,則m的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,若不等式組
x+y-2≥0
x-y+2≥0
x≤t
表示的平面區(qū)域的面積為1,則實(shí)數(shù)t的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
夾角為45°,且|
a
|=1,|
b
|=3
2
,則|2
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:函數(shù)f(x)=lg(ax2-x+
1
16
a)的定義域?yàn)镽;命題q:不等式3x-9x<a對一切實(shí)數(shù)均成立,若命題“p或q”為真命題,且“p且q”為假命題,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4與x軸交于A,B,過A,B分別作圓的切線L1,L2;P為圓上異于A,B的動點(diǎn),過P作圓O的切線分別交L1,L2于D,C兩點(diǎn),直線AC交BD于點(diǎn)M,則M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,公比q=2,則
a3+a4
a1+a2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一塊半徑為R,圓心角為60°(∠AOB=60°)的扇形木板,現(xiàn)欲按如圖所示鋸出一矩形(矩形EFGN)桌面,則此桌面的最大面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是假命題的個數(shù)是(  )
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
③若
a
,
b
是兩個非零向量,則“|
a
+
b
|=|
a
-
b
|”是“
a
b
”的充要條件;
④若函數(shù)f(x)=|2x-1|,則?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案