已知函數(shù)f(x)=ax-lnx,g(x)=
lnx
x
,它們的定義域都是(0,e],其中e≈2.718,a∈R
( I)當a=1時,求函數(shù)f(x)的單調區(qū)間;
( II)當a=1時,對任意x1,x2∈(0,e],求證:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,問是否存在實數(shù)a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
( I)當a=1時,f(x)=x-lnx,x∈(0,e]
f′(x)=1-
1
x
=
x-1
x

令f'(x)>0∴1<x<e令f'(x)<0∴0<x<1
∴f(x)的單調增區(qū)間為(1,e),減區(qū)間為(0,1)
( II)由( I)知f(x)在(0,e]的最小值為f(1)=1
g′(x)=
1-lnx
x2
g'(x)≥0在區(qū)間(0,e]上成立
∴g(x)在(0,e]單調遞增,故g(x)在區(qū)間(0,e]上有最大值g(e)=
1
e

要證對任意x1,x2∈(0,e],f(x1)>g(x2)+
17
27

即證f(x1)min>g(x2)max+
17
27

即證1>
1
e
+
17
27
,即證e>2.7
故命題成立
( III)h(x)=f(x)-g(x)•x=ax-2lnx,x∈(0,e]
h′(x)=a-
2
x
=
ax-2
x

(1)當a=0時,h'(x)<0,∴h(x)在(0,e]單調遞減,
故h(x)的最小值為h(e)=-2,舍去
(2)當a>0時,由h'(x)<0,得0<x<
2
a

①當0<a≤
2
e
時,
2
a
≥e

∴h(x)在(0,e]單調遞減,故h(x)的最小值為h(e)=ae-2=3,
a=
5
e
2
e
,舍去
②當a>
2
e
時,
2
a
<e
,
∴h(x)在(0,
2
a
]
單調遞減,在(
2
a
,e)
單調遞增,
故h(x)的最小值為h(
2
a
)=2-2ln
2
a
=3
a=2
e
,滿足要求
(3)當a<0時,h'(x)<0在(0,e]上成立,
∴h(x)在(0,e]單調遞減,故h(x)的最小值為h(e)=ae-2=3∴a=
5
e
2
e
,舍去
綜合上述,滿足要求的實數(shù)a=2
e
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ex(ax+b),曲線y=f(x)經(jīng)過點P(0,2),且在點P處的切線為l:y=4x+2.
(1)求常數(shù)a,b的值;
(2)求證:曲線y=f(x)和直線l只有一個公共點;
(3)是否存在常數(shù)k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常數(shù)k的取值范圍;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)5(x)=x3+bx2+bx+c(實數(shù)b,b,c為常數(shù))的圖象過原點,且在x=1處的切線為直線y=-
1
2

(1)求函數(shù)5(x)的解析式;
(2)若常數(shù)口>0,求函數(shù)5(x)在區(qū)間[-口,口]上的最5值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=2x3-6x+m(m為常數(shù)),在[0,2]上有最大值3,那么此函數(shù)在[0,2]上的最小值為( 。
A.-1B.-3C.-5D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個極值點.
(1)求a的值;
(2)求x∈[0,2]時,函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
x2+lnx.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)求證:當x>1時,
1
2
x2+lnx<
2
3
x3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某化工企業(yè)生產某種產品,生產每件產品的成本為3元,根據(jù)市場調查,預計每件產品的出廠價為x元(7≤x≤10)時,一年的產量為(11-x)2萬件;若該企業(yè)所生產的產品能全部銷售,則稱該企業(yè)正常生產;但為了保護環(huán)境,用于污染治理的費用與產量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產一年的利潤L(x)與出廠價x的函數(shù)關系式;
(Ⅱ)當每件產品的出廠價定為多少元時,企業(yè)一年的利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設a=則二項式的常數(shù)項是       .

查看答案和解析>>

同步練習冊答案