曲線C上任一點到定點(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點,且⊥,設(shè)M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標(biāo)和這條定直線的方程.若不存在,說明理由.
(1)y=2x2;
(2)M軌跡是拋物線,故存在一定點和一定直線,使得M到定點的距離等于它到定直線的距離。所求的定點為,定直線方程為y=.
解析試題分析:
思路分析:(1)曲線C上任一點到定點(0,)的距離等于它到定直線的距離.所以,由拋物線的定義,其方程為,而,所以,y=2x2;
(2)利用“參數(shù)法” 得到y(tǒng)=4x2+4x+,根據(jù)圖象的平移變換得到結(jié)論:定點為,定直線方程為y=.
解:(1)因為,利用拋物線的定義,確定得到y(tǒng)=2x2;
(2)設(shè):y-2=k(x-1)(k≠0) :y=2=
由得2x2-kx+k-2=0
同理得B點坐標(biāo)為
∴
消去k得:y=4x2+4x+ ………9分
M軌跡是拋物線,故存在一定點和一定直線,使得M到定點的距離等于它到定直線的距離。將拋物線方程化為,此拋物線可看成是由拋物線左移個單位,上移個單位得到的,而拋物線的焦點為(0,),準(zhǔn)線為y=-.∴所求的定點為,定直線方程為y=.
考點:拋物線方程,直線與拋物線的位置關(guān)系。
點評:難題,利用“直接法”可確定得到拋物線方程。利用“參數(shù)法”求得拋物線方程,通過研究焦點、準(zhǔn)線等,達到確定“存在性”的目的。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A,B是橢圓的兩個頂點, ,直線AB的斜率為.求橢圓的方程;(2)設(shè)直線平行于AB,與x,y軸分別交于點M、N,與橢圓相交于C、D,
證明:的面積等于的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線C:的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.
(1)若,求線段中點M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點為時,求的面積;
(3)若M是拋物線C準(zhǔn)線上的點,求證:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點為、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過點的直線與拋物線交于兩點,為坐標(biāo)原點.
(1)若以為直徑的圓經(jīng)過原點,求直線的方程;
(2)若線段的中垂線交軸于點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時,求曲線Cl與C2公共點的直角坐標(biāo);
(2)若,當(dāng)變化時,設(shè)曲線C1與C2的公共點為A,B,試求AB中點M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的長軸長為,離心率.
Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com