【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)

(1)求

(2)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

【答案】(1;(2

【解析】試題分析:(1)分層抽樣各層之間按比例來抽取,求解時先由B組數(shù)據(jù)求得抽取比例,由此比例解得的值;(2)首先確定B,C抽取的人數(shù)各有多少,確定任選2人的方法種數(shù)和都來自C的種數(shù),求其比值即可

試題解析:(1)由題意可得,,所以

2)記從高校B抽取的2人為,從高校C抽取的3人為,則從高校B、C抽取的5人中選2人作專題發(fā)言的基本事件有:,,,

,,,, 共10種.

設(shè)選中2人都來自高校C的事件為X,則X包含的基本事件有,,共3種,因此;故選中的2人都來自高校C的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點處下上至處有兩種路徑一種是從沿直線步行到,另一種是先從沿索道乘纜車到然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車到,處停留再從勻速步行到,假設(shè)纜車勻速直線運動的速度為,山路長為1260,經(jīng)測量

1求索道的長;

2問:乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時間不超過,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:指數(shù)函數(shù)y(1a)x是R上的增函數(shù),命題q不等式ax2+2x-1>0有解若命題p是真命題,命題q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程,并回答問題:

;②;③;④;…

(1)請你根據(jù)這列方程的特點寫出第個方程;

(2)直接寫出第2009個方程的根;

(3)說出這列方程的根的一個共同特點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形中, , , 的中點.將沿折起,使得平面平面.

(1)求證: ;

(2)若點是線段上的一動點,問點在何位置時,二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐中,平面平面,且

1已知點在線段上,確定的位置,使得平面;

2分別在線段上,若沿直線將四邊形向上翻折,恰好重合,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓左、右焦點分別為、,頂點,直的直線交負半軸于,且.

1橢圓離心;

2、、點的圓恰好與直線切,求橢圓方程;

3直線2中橢圓交于不同的兩點、,內(nèi)切圓的面積是否存在最大值?存在,個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

B. 在線性回歸分析中,回歸直線不一定過樣本點的中心

C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好

D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系

查看答案和解析>>

同步練習(xí)冊答案