某市公租房的房源位于A、B、C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(Ⅰ)恰有2人申請A片區(qū)房源的概率;
(Ⅱ)申請的房源所在片區(qū)的個數(shù)的ξ分布列與期望.
分析:(I)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是4個人中,每一個人有3種選擇,共有34種結(jié)果,滿足條件的事件是恰有2人申請A片區(qū)房源,共有C4222,得到概率.
(II)由題意知變量ξ的可能取值是1,2,3,結(jié)合變量對應(yīng)的事件和第一問的做法寫出變量對應(yīng)的概率,寫出分布列,做出變量的期望值.
解答:解:(I)由題意知本題是一個等可能事件的概率
試驗發(fā)生包含的事件是4個人中,每一個人有3種選擇,共有3
4種結(jié)果,
滿足條件的事件是恰有2人申請A片區(qū)房源,共有C
422
2∴根據(jù)等可能事件的概率公式得到P=
=
(II)由題意知ξ的可能取值是1,2,3
P(ξ=1)=
=,
P(ξ=2)=
=,
P(ξ=3)=
=∴ξ的分布列是:
∴Eξ=
1×+2×+3×= 點(diǎn)評:本題考查等可能事件的概率,考查離散型隨機(jī)變量的分布列和期望,求離散型隨機(jī)變量的分布列和期望是近年來理科高考必出的一個問題,題目做起來不難,運(yùn)算量也不大,只要注意解題格式就問題不大.