(本小題12分)
已知點(diǎn)P(2,0)及圓C:.
(1)若直線過點(diǎn)P且與圓心C的距離為1,求直線的方程.
(2)設(shè)直線與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)P(2,0)的直線垂直平
分弦AB. 若存在,求出實(shí)數(shù)的值;若不存在,說明理由.
(本小題12分)
解:(1)由題意,圓方程為:
① 當(dāng)l斜率不存在時(shí),直線l的方程為:,而圓心為,滿足題意 ……(2分)
② 當(dāng)l斜率存在時(shí),可令l的方程為:
圓心C到直線l的距離
于是l的方程為: …………………………………………(3分)
綜上,l的方程為: 或 ……………………………………(1分)
(2)由題意垂直平分弦AB,則:圓心在直線上
即過點(diǎn),又過點(diǎn)P,的方程為: …………(2分)
而直線AB垂直,則:
則:AB的方程為: ………………………………………………(2分)
又圓心到直線的距離:
直線與圓相離,故:不合題意
則:這樣的實(shí)數(shù)不存在 …………………………………………………………(2分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建師大附中高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題12分)已知函數(shù)(為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(I)求的值;
(II)若在及所在的取值范圍上恒成立,求的取值范圍;
(Ⅲ)討論關(guān)于的方程的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年吉林省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題12分)已知二次函數(shù)滿足且.
(1)求的解析式;
(2) 當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.
(3)設(shè),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題12分)
已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為,離心率為,且過點(diǎn),
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系(其中為參數(shù))所過的定點(diǎn)恰在雙曲線上,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
(本小題12分)
已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過坐標(biāo)原點(diǎn),求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河南省許昌市高二下學(xué)期聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題12分)
已知曲線直線,且直線與曲線相切于點(diǎn),求直線的方程和切點(diǎn)的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com