關(guān)于函數(shù)f(x)=sin2x-()|x|+,有下面四個(gè)結(jié)論,其中正確結(jié)論的個(gè)數(shù)為①f(x)是奇函數(shù)、诋(dāng)x>2003時(shí),f(x)>恒成立 ③f(x)的最大值是、躥(x)的最小值是-
A.1
B.2
C.3
D.4
顯然f(x)為偶函數(shù),結(jié)論①錯(cuò).對(duì)于結(jié)論②,當(dāng)x=1000π時(shí),x>2003,sin21000π=0,∴f(1000π)=-()1000π<,因此結(jié)論②錯(cuò). 又f(x)=-()|x|+=1-cos2x-()|x|,-1≤cos2x≤1, ∴-≤1-cos2x≤. 故1-cos2x-()|x|<,即結(jié)論③錯(cuò). 而cos2x,()|x|在x=0時(shí)同時(shí)取得最大值, 所以f(x)=1-cos2x-()|x|在x=0時(shí)可取得最小值-, 即結(jié)論④是正確的. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:吉林省實(shí)驗(yàn)中學(xué)2012屆高三第六次模擬考試數(shù)學(xué)理科試題 題型:022
已知定義在[1,+∞)上的函數(shù)f(x)=.給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,4];
②關(guān)于x的方程f(x)=()n(n∈N*)有2n+4個(gè)不相等的實(shí)數(shù)根;
③當(dāng)x∈[2n-1,2n](n∈N*)時(shí),函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中你認(rèn)為正確的所有結(jié)論的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試天津卷理數(shù) 題型:044
已知函數(shù)f(x)=x2lnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)設(shè)(Ⅱ)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的函數(shù)f(x)=+bx2+cx+bc,其導(dǎo)函數(shù)為f+(x).令g(x)=∣f (x) ∣,記函數(shù)g(x)在區(qū)間[-1、1]上的最大值為M.
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-,試確定b、c的值:
(Ⅱ)若∣b∣>1,證明對(duì)任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m
(Ⅲ)若M≧K對(duì)任意的b、c恒成立,試求k的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3+x2在x=-1處取得極值,記g(x)=,程序框圖如圖所示,若輸出的結(jié)果S>,則判斷框中可以填入的關(guān)于n的判斷條件是 ( )
A.n≤2 011? B.n≤2 012?
C.n>2 011? D.n>2 012?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ax3+x2在x=-1處取得極大值,記g(x)=。程序框圖如圖所示,若輸出的結(jié)果S=,則判斷框中可以填入的關(guān)于n的判斷條件是( )
A.n≤2013 B.n≤2014 C.n>2013 D.n>2014
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com