把“十進(jìn)制”數(shù)123(10)轉(zhuǎn)化為“二進(jìn)制”數(shù)為
 
考點(diǎn):進(jìn)位制
專題:計(jì)算題
分析:利用“除k取余法”是將十進(jìn)制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.
解答: 解:123÷2=61…1
61÷2=30…1
30÷2=15…0
15÷2=7…1
7÷2=3…1
3÷2=1…1
1÷2=0…1
故123(10)=1111011 (2)
故答案為:1111011 (2)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy 中,直線l的參數(shù)方程為
x=a+
3
t
y=t
,(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)o為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求圓C在直角坐標(biāo)系中的方程;
(Ⅱ)若圓C與直線l相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinx-a,x∈[
π
3
6
]有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、[-
1
2
,
3
2
B、[-
3
2
,
1
2
C、-
1
2
≤a<
3
2
或a=1
D、-
3
2
≤a<
1
2
或a=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-3)2+(y+5)2=25和兩點(diǎn)A(2,2),B(-1,-2),若點(diǎn)P在圓C上且S△ABP=
5
2
,則滿足條件的P點(diǎn)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M(1,1),點(diǎn)N(4,5),則|MN|=(  )
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的流程圖,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是定義在[-2,2]上的奇函數(shù),且在[0,2]上單調(diào)遞減,若f(m)+f(m-1)<0,則實(shí)數(shù)m的取值范圍是(  )
A、[-1,
1
2
B、(
1
2
,2]
C、(
1
2
,+∞)
D、(-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“實(shí)數(shù)m=-
1
2
”是“直線l1:x+2my-1=0和直線l2:(3m+1)x-my-1=0”相互平行的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案