【題目】設(shè):實數(shù)滿足,:實數(shù)滿足.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若,且是的充分不必要條件,求實數(shù)的取值范圍.
【答案】(1)2<x<3(2)≤a≤2
【解析】
試題(1)由得(x-a)(x-(2a+1))<0,當(dāng)a=1時,代入可得.由|x-3|<1,得-1<x-3<1,即可得出.利用p∧q為真,則p真且q真,即可得出;(2)若¬p是¬q的充分不必要條件,可得q是p的充分不必要條件,即可得出
試題解析:(1)由x2﹣(3a+1)x+2a2+a<0得(x﹣a)(x﹣(2a+1))<0
當(dāng)a=1時,1<x<3,即p為真時實數(shù)x的取值范圍是1<x<3
由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4
即q為真時實數(shù)x的取值范圍是2<x<4,
若p∧q為真,則p真且q真,
∴實數(shù)x的取值范圍是2<x<3.
(2)若¬p是¬q的充分不必要條件,
則¬p¬q,且¬q¬p,
設(shè)A={x|¬p},B={x|¬q},則AB,
又A={x|¬p}={x|x≤a或x≥2a+1},
B={x|¬q}={x|x≥4或x≤2},
則0<a≤2,且2a+1≥4
∴實數(shù)a的取值范圍是≤a≤2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張坐標(biāo)紙上一已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為.
(1)求軌跡的方程;
(2)若直線與軌跡交于兩個不同的點,且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,將曲線的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線,過點作直線,交曲線于兩點,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與圓C相切,圓心C的坐標(biāo)為
(1)求圓C的方程;
(2)設(shè)直線y=x+m與圓C交于M、N兩點.
①若,求m的取值范圍;
②若OM⊥ON,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機(jī)抽取了名年齡在且關(guān)注“旅游文化周”的居民進(jìn)行調(diào)查,所得結(jié)果統(tǒng)計為如圖所示的頻率分布直方圖.
年齡 | |||
單人促銷價格(單位:元) |
(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);
(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團(tuán)旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;
(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進(jìn)行旅游知識推廣,并在知識推廣后再抽取人進(jìn)行反饋,求進(jìn)行反饋的居民中至少有人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知和是橢圓的兩個焦點,且點在橢圓C上.
(1)求橢圓C的方程;
(2)直線(m>0)與橢圓C有且僅有一個公共點,且與x軸和y軸分別交于點M,N,當(dāng)△OMN面積取最小值時,求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com