5.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球中有黃球的概率為$\frac{5}{6}$.

分析 先求出基本事件總數(shù),再求出這2只球中有黃球包含的基本事件個數(shù),由此能求出這2只球中有黃球的概率.

解答 解:袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,
從中一次隨機(jī)摸出2只球,
基本事件總數(shù)n=${C}_{4}^{2}$=6,
這2只球中有黃球包含的基本事件個數(shù)m=${C}_{2}^{2}+{C}_{2}^{1}{C}_{2}^{1}$=5,
∴這2只球中有黃球的概率為p=$\frac{m}{n}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.關(guān)于x的不等式$\left\{\begin{array}{l}{x≤0}\\{x+y≥0}\\{kx-y+1≥0}\end{array}\right.$表示的平面區(qū)域是等腰直角三角形,則該三角形的面積為$\frac{1}{2}$或$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,D為AC上一點(diǎn),且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{DC},P$為BD上一點(diǎn),且滿足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}(m>0,n>0)$,則$\frac{1}{m}+\frac{1}{n}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=sinωx+cosωx(ω>0),若$y=f({x+θ})({0<θ<\frac{π}{2}})$是周期為π的偶函數(shù),則θ的值是(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,∠A,∠B,∠C所對的邊為a,b,c,A=60°,b=1,S△ABC=$\sqrt{3}$,則c等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)${\vec e_1}$,${\vec e_2}$為單位向量,且夾角為60°,若$\vec a={\vec e_1}+3{\vec e_2}$,$\vec b=2{\vec e_1}$,則$\vec a$在$\vec b$方向上的投影為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示的函數(shù)$f(x)=2sin(wx+φ)(w>0,\frac{π}{2}≤φ≤π)$的部分圖象,其中A、B兩點(diǎn)之間的距離為5,那么f(-1)=(  )
A.-1B.2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:關(guān)于x的方程x2+2ax+a+2=0有解,命題q:“?x∈[1,2],x2-a≥0”.若命題“p且q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案