【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過點(diǎn)( , ),且原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點(diǎn)A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.

【答案】
(1)解:∵原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形,∴b=c,

∵橢圓C: =1(α>b>0)經(jīng)過點(diǎn)( , ),∴ =1,

聯(lián)立 ,解得b=c=2,a2=8.

∴橢圓E的方程為 =1


(2)解:假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點(diǎn)A,B.且

設(shè)圓的方程為:x2+y2=r2,(0<r<2).

設(shè)圓的切線為y=kx+m,則 =r,A(x1,y1),B(x2,y2).

聯(lián)立 ,化為:(1+2k2)x2+4kmx+2m2﹣8=0,

△≥0,可得:9k2+4≥m2

x1+x2= ,x1x2=

,∴ =x1x2+y1y2=0.

∴(1+k2)x1x2+mk(x1+x2)+m2=0,

+m2=0,

化為:3m2=8+8k2,與 =r聯(lián)立,

可得r2= = = <4,

因此假設(shè)成立,存在圓心在原點(diǎn)的圓,方程為x2+y2= ,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點(diǎn)A,B,且


【解析】(1)由原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形,可得b=c.由橢圓C: =1(α>b>0)經(jīng)過點(diǎn)( ),可得 =1,與a2=b2+c2聯(lián)立即可得出.(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點(diǎn)A,B.且 .設(shè)圓的方程為:x2+y2=r2 , (0<r<2).設(shè)圓的切線為y=kx+m,可得 =r,A(x1 , y1),B(x2 , y2).與橢圓方程聯(lián)立化為:(1+2k2)x2+4kmx+2m2﹣8=0,利用根與系數(shù)的關(guān)系及其 ,可得 =x1x2+y1y2=0.化簡整理即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左焦點(diǎn)左頂點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)已知,是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動點(diǎn).若,試問直線的斜率是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將該產(chǎn)品的年利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

(2)該廠家年促銷費(fèi)用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如下框圖所給的程序運(yùn)行結(jié)果為,那么判斷框中應(yīng)填入的關(guān)于的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.

1)求圓的方程;

2)設(shè)動直線與圓交于兩點(diǎn),則在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對稱?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若點(diǎn)Q為C2上的動點(diǎn),P為C1上的動點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民有無收看“奧運(yùn)會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進(jìn)行調(diào)查,若在60~70歲這個年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的圖象經(jīng)過兩點(diǎn),如圖所示,且函數(shù)的值域?yàn)?/span>.過該函數(shù)圖象上的動點(diǎn)軸的垂線,垂足為,連接.

(I)求函數(shù)解析式;

的面積為,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案