(2013•自貢一模)已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)?x∈R都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2],且x1≠x2時(shí),都有
f(x1)-f(x2)x1-x2
<0
,給出下列命題:
(1)f(2)=0;
(2)直線x=-4是函數(shù)y=f(x)圖象的一條對(duì)稱軸;
(3)函數(shù)y=f(x)在[-4,4]上有四個(gè)零點(diǎn);
(4)f(2012)=f(0).
其中正確命題的序號(hào)為
(1)(2)(4)
(1)(2)(4)
(把所有正確命題的序號(hào)都填上).
分析:由函數(shù)y=f(x)是R上的偶函數(shù),對(duì)任意x∈R,都有f(x+4)=f(x)+f(2)成立,我們令x=-2,可得f(-2)=f(2)=0,進(jìn)而得到f(x+4)=f(x)恒成立,再由當(dāng)x1,x2∈[0,2],且x1≠x2時(shí),都有
f(x1)-f(x2)
x1-x2
<0
,得函數(shù)在區(qū)間[0,2]單調(diào)遞減,由此我們畫(huà)出函數(shù)的簡(jiǎn)圖,然后對(duì)題目中的四個(gè)結(jié)論逐一進(jìn)行分析,即可得到答案.
解答:解:∵對(duì)任意x∈R,都有f(x+4)=f(x)+f(2)成立
當(dāng)x=-2,可得f(-2)=0,
又∵函數(shù)y=f(x)是R上的偶函數(shù)
∴f(-2)=f(2)=0,故(1)正確;
由f(2)=0,知f(x+4)=f(x)+f(2)=f(x),故周期為4.
又由當(dāng)x1,x2∈[0,2]且x1≠x1時(shí),都有
f(x1)-f(x2)
x1-x2
<0

∴函數(shù)在區(qū)間[0,2]單調(diào)遞減,
由函數(shù)是偶函數(shù),知函數(shù)在[-2,0]上單調(diào)遞增,
再由函數(shù)的周期為4,得到函數(shù)f(x)的示意圖如下圖所示:

由圖可知:(1)正確,(2)正確,(3)錯(cuò)誤,(4)正確
故答案:(1)(2)(4).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的圖象,函數(shù)的奇偶性,函數(shù)的周期性,函數(shù)的零點(diǎn),解答的關(guān)鍵是根據(jù)已知,判斷函數(shù)的性質(zhì),并畫(huà)出函數(shù)的草圖,結(jié)合草圖分析題目中相關(guān)結(jié)論的正誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)已知函數(shù)f(x)=  
x+1
,  x
≤0,
log2x
,x>0
,
則函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)運(yùn)行如圖所示的程序框圖,則輸出s的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)復(fù)數(shù)
1+i
4+3i
的虛部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)集合M={x||x-3|<4},N={x|x2+x-2<0,x∈Z},則 M∩N( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)如圖,四棱錐P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F(xiàn)分別是AB,BC的中點(diǎn)N在軸上.
(I)求證:PF⊥FD;
(II)在PA上找一點(diǎn)G,使得EG∥平面PFD;
(III)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案