如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,
(Ⅰ)求證:PC⊥BC;
(Ⅱ)求點A到平面PBC的距離.
(Ⅰ)證明:因為PD⊥平面ABCD,BC平面ABCD,
所以PD⊥BC,
由∠BCD=90°,得BC⊥DC,
又PD∩DC=D,PD平面PCD,DC平面PCD,
所以BC⊥平面PCD,
因為PC平面PCD,
所以PC⊥BC。
(Ⅱ)解:連結AC,設點A到平面PBC的距離為h,
因為AB∥DC,∠BCD=90°,所以∠ABC=90°,
從而由AB=2,BC=1,得△ABC的面積S△ABC=1,
由PD⊥平面ABCD及PD=1,
得三棱錐P-ABC的體積
因為PD⊥平面ABCD,DC平面ABCD,
所以PD⊥DC,
又PD=DC=1,所以,
由PC⊥BC,BC=1,得△PBC的面積,
,得,
因此,點A到平面PBC的距離為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案