【題目】已知拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點,E的準(zhǔn)線與x軸交于點C,△CAB的面積為4,以點D(3,0)為圓心的圓D過點A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點,求 的取值范圍.
【答案】解:(Ⅰ)由題意, , 由p2=4得p=2,圓D半徑R=2 ,
所以拋物線E:y2=4x,圓(x﹣3)2+y2=8.
(Ⅱ)設(shè)直線m:y=kx+b(|k|≥1),
則 =2 ,即k2+6kb+b2=8,①
聯(lián)立y=kx+b與拋物線得ky2﹣4y+4b=0,△=16﹣16kb,
由①知kb≤1,即△≥0
所以方程ky2﹣4y+4b=0有兩個實數(shù)根y1 , y2 , 且y1+y2= ,y1y2=
= [(y1y2)2﹣4(y1+y2)2+24y1y2+16]= =
因為|k|≥1,所以 的取值范圍是(0,4].
【解析】(Ⅰ)利用,△CAB的面積為4,以點D(3,0)為圓心的圓D過點A,B,即可求拋物線E和圓D的方程;(Ⅱ)設(shè)直線m:y=kx+b(|k|≥1),則 =2 ,即k2+6kb+b2=8,聯(lián)立y=kx+b與拋物線,利用韋達(dá)定理及向量數(shù)量積公式,即可得出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,其前n項和為Sn , 若S9=99,且a4 , a7 , a12成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若 ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式 (其中a>0).
(1)當(dāng)a=3時,求不等式的解集;
(2)若不等式有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風(fēng)貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學(xué)科更注重傳統(tǒng)文化考核.某校為了了解高二年級中國數(shù)學(xué)傳統(tǒng)文化選修課的教學(xué)效果,進(jìn)行了一次階段檢測,并從中隨機(jī)抽取80名同學(xué)的成績,然后就其成績分為A、B、C、D、E五個等級進(jìn)行數(shù)據(jù)統(tǒng)計如下:
成績 | 人數(shù) |
A | 9 |
B | 12 |
C | 31 |
D | 22 |
E | 6 |
根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.
(1)若該校高二年級共有1000名學(xué)生,試估算該校高二年級學(xué)生獲得成績?yōu)锽的人數(shù);
(2)若等級A、B、C、D、E分別對應(yīng)100分、80分、60分、40分、20分,學(xué)校要求“平均分達(dá)60分以上”為“教學(xué)達(dá)標(biāo)”,請問該校高二年級此階段教學(xué)是否達(dá)標(biāo)?
(3)為更深入了解教學(xué)情況,將成績等級為A、B的學(xué)生中,按分層抽樣抽取7人,再從中任意抽取3名,求抽到成績?yōu)锳的人數(shù)X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖的算法思路,源于我國南宋時期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出的秦九韶算法,執(zhí)行該程序框圖,若輸入的n,an , x分別為5,1,﹣2,且a4=5,a3=10,a2=10,a1=5,a0=1,則輸出的v=( )
A.1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )圖象如圖所示,則下列關(guān)于函數(shù) f (x)的說法中正確的是( )
A.對稱軸方程是x= +kπ(k∈Z)
B.對稱中心坐標(biāo)是( +kπ,0)(k∈Z)
C.在區(qū)間(﹣ , )上單調(diào)遞增
D.在區(qū)間(﹣π,﹣ )上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC. (Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 {an} 的前 n 項和為Sn , S1=6,S2=4,Sn>0且S2n , S2n﹣1 , S2n+2成等比數(shù)列,S2n﹣1 , S2n+2 , S2n+1成等差數(shù)列,則a2016等于( )
A.﹣1009
B.﹣1008
C.﹣1007
D.﹣1006
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,為了得到函數(shù)g(x)=sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com