【題目】已知數(shù)列 {an} 的前 n 項和為Sn , S1=6,S2=4,Sn>0且S2n , S2n1 , S2n+2成等比數(shù)列,S2n1 , S2n+2 , S2n+1成等差數(shù)列,則a2016等于(
A.﹣1009
B.﹣1008
C.﹣1007
D.﹣1006

【答案】A
【解析】解:∵數(shù)列{an}的前n項和為Sn , S1=6,S2=4,Sn>0,且S2n , S 2n1 . S 2n+2成等比數(shù)列, S2n1 . S2n+2 , S2n+1成等差數(shù)列,
∴依題意,得 ,
∵Sn>0,∴2S2n+2= + ,
即2 = +
故數(shù)列{ }是等差數(shù)列,
由S1=6,S2=4,可得S3=12,S4=9,
∴數(shù)列{ }是首項為2,公差為1的等差數(shù)列.
=2+(n﹣1)=n+1,即S2n=(n+1)2
故S2n1= =(n+1)(n+2),
故S2016=10092 ,
S2015=1009×1010,
故a2016=S2016﹣S2015=﹣1009.
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1=3,其前n項和為Sn , 等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+S2=12,q= (Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn= ,求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點,E的準(zhǔn)線與x軸交于點C,△CAB的面積為4,以點D(3,0)為圓心的圓D過點A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當(dāng)m=﹣1時,求不等式f(x)≤2的解集;
(II)設(shè)關(guān)于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的三視圖如圖所示,其五個頂點都在同一球面上,若四棱錐P﹣ABCD的側(cè)面積等于4(1+ ),則該外接球的表面積是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校高三年級學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對廣一?荚嚁(shù)學(xué)成績進行分析,從中抽取了n 名學(xué)生的成績作為樣本進行統(tǒng)計(該校全體學(xué)生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.
根據(jù)上級統(tǒng)計劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對照表為表( c ).

分?jǐn)?shù)

[50,85]

[85,110]

[110,150]

可能被錄取院校層次

?

本科

重本


(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和專科兩個層次的學(xué)生中隨機抽取3 名學(xué)生進行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,函數(shù)y=f[f(x)]﹣1的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,D為△ABC外接圓劣弧 上的點(不與點A,C重合),延長BD至E,延長AD交BC的延長線于F.
(1)求證:∠CDF=∠EDF;
(2)求證:ABACDF=ADFCFB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(I)當(dāng)m=3時,判斷直線l與C的位置關(guān)系;
(Ⅱ)當(dāng)C上有且只有一點到直線l的距離等于 時,求C上到直線l距離為2 的點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案