14.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$24+12\sqrt{3}$B.$24+5\sqrt{3}$C.$12+15\sqrt{3}$D.$12+12\sqrt{3}$

分析 由已知可得:幾何體為三棱柱,求出底面面積,周長及高,代入棱柱表面積公式,可得答案.

解答 解:由已知可得:幾何體為三棱柱,
底面是斜邊長為4,斜邊上的高為$\sqrt{3}$的直角三角形,
底面面積為:2$\sqrt{3}$,底面周長為:6+2$\sqrt{3}$,
棱柱的高為4,
故棱柱的表面積S=2×2$\sqrt{3}$+4×(6+2$\sqrt{3}$)=24+12$\sqrt{3}$,
故選:A.

點評 本題考查的知識點是棱柱、棱錐、棱臺的體積和表面積,空間幾何體的三視圖,根據(jù)已知判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tanα=3,則sin2α=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.
(1)求異面直線AP,BM所成角的余弦值;
(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為$\frac{4}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=$\frac{1}{3}$x3+x2-ax+3a在區(qū)間[1,2]上單調(diào)遞增,則實數(shù)a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求A,ω,φ的值;
(2)設(shè)θ為銳角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計這50名學(xué)生百米測試成績的平均值;
(2)若從第一組、第五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求雙曲線C:$\frac{x^2}{8}$-$\frac{y^2}{12}$=1的焦點坐標(biāo)、實軸長、虛軸長及漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各組函數(shù)中不表示同一函數(shù)的是( 。
A.f(x)=lgx2,g(x)=2lg|x|B.f(x)=x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$D.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x|x-a|,若對任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,則實數(shù)a取值范圍為( 。
A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]

查看答案和解析>>

同步練習(xí)冊答案