已知sin(α-
π
4
)=
7
2
10
,cos2α=
7
25
,則cosα
=
-
4
5
-
4
5
分析:先根據(jù)兩角差的正弦公式得到cosα=sinα-
7
5
<-
2
5
,再結合余弦的二倍角公式即可求得cosα的值.
解答:解:因為sin(α-
π
4
)=
2
2
(sinα-cosα)=
7
2
10

∴sinα-cosα=
7
5
,∴cosα=sinα-
7
5
<-
2
5

∵cos2α=2cos2α-1=
7
25
,∴cosα=-
4
5

故答案為:-
4
5
點評:本題主要考查二倍角的余弦.解決這類題目的關鍵在于對公式的熟練掌握以及靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sin(
π
4
-x)=-
1
5
,且0<x<
π
2
,求sin(
π
4
+x)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+
π
4
)=
1
3
,則sin2α
=
-
7
9
-
7
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α-
π
4
)=
3
5
,則sin2α=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•珠海一模)已知sin(
π
4
-α)=
5
13
,0<α<
π
4
,則cos2α的值為 ( 。

查看答案和解析>>

同步練習冊答案