小王參加一次比賽,比賽共設(shè)三關(guān),第一、二關(guān)各有兩個必答題,如果每關(guān)兩個問題都答對,可進入下一關(guān),第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功.每過一關(guān)可一次性獲得價值分別為1000元,3000元,6000元的獎品(不重復得獎),小王對三關(guān)中每個問題回答正確的概率依次為,,,且每個問題回答正確與否相互獨立.
(1)求小王過第一關(guān)但未過第二關(guān)的概率;
(2)用X表示小王所獲得獎品的價值,寫出X的概率分布列,并求X的數(shù)學期望.

(1)
(2)X的分布列為

X
0
1000
3000
6000
P




 
∴X的數(shù)學期望E(X)=2160

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

袋中裝著分別標有數(shù)字1,2,3,4,5的5個形狀相同的小球.
(1)從袋中任取2個小球,求兩個小球所標數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個小球,記第一次取出的小球所標數(shù)字為x,第二次為y,求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為6的概率;
(2)兩數(shù)之積是6的倍數(shù)的概率;
(3)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=15的內(nèi)部的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學在運動會期間舉行定點投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨立的,已知小明每次投籃投中的概率都是
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)把一顆質(zhì)地均勻,四個面上分別標有復數(shù),為虛數(shù)單位)的正四面體玩具連續(xù)拋擲兩次,第一次出現(xiàn)底面朝下的復數(shù)記為,第二次出現(xiàn)底面朝下的復數(shù)記為
(1)用表示“”這一事件,求事件的概率;
(2)設(shè)復數(shù)的實部為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).學科網(wǎng)設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設(shè)每盤游戲獲得的分數(shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.
(1)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為,求
(2)若張三、李四兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關(guān)于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a,b是一枚骰子先后投擲兩次所得到的點數(shù),求方程有兩個正實數(shù)根的概率;
(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實數(shù)根的概率.

查看答案和解析>>

同步練習冊答案