甲、乙等五名大運(yùn)會(huì)志愿者被隨機(jī)分到AB、CD四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學(xué)期望.
(1)(2)(3)
(1)記“甲、乙兩人同時(shí)參加A崗位服務(wù)”為事件A1,
P(A1)=.
故甲、乙兩人同時(shí)參加A崗位服務(wù)的概率為.
(2)記“甲、乙兩人在同一崗位服務(wù)”為事件A2,
P(A2)=.
故甲、乙兩人不在同一崗位服務(wù)的概率為P(2)=1-P(A2)=.
(3)由題知,隨機(jī)變量ξ的所有可能取值為1,2,則P(ξ=2)=P(ξ=1)=1-P(ξ=2)=.故ξ的分布列為
ξ
1
2
P


數(shù)學(xué)期望=1×+2×
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)入院的50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
 
患心肺疾病
不患心肺疾病
合計(jì)

 
5
 

10
 
 
合計(jì)
 
 
50
 
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

據(jù)IEC(國際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項(xiàng)目的資金為≥0)萬元,投資B項(xiàng)目資金為≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項(xiàng)目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項(xiàng)目的利潤分別為,試寫出隨機(jī)變量的分布列和期望;
(2)某公司計(jì)劃用不超過萬元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投
資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利
潤之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某旅游推介活動(dòng)晚會(huì)進(jìn)行嘉賓現(xiàn)場(chǎng)抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則是:抽獎(jiǎng)盒中裝有個(gè)大小相同的小球,分別印有“多彩十藝節(jié)”和“美麗泉城行”兩種標(biāo)志,搖勻后,參加者每次從盒中同時(shí)抽取兩個(gè)小球,若抽到兩個(gè)球都印有“多彩十藝節(jié)”標(biāo)志即可獲獎(jiǎng).
(I)活動(dòng)開始后,一位參加者問:盒中有幾個(gè)“多彩十藝節(jié)”球?主持人笑說:我只知道從盒中同時(shí)抽兩球不都是“美麗泉城行”標(biāo)志的概率是,求抽獎(jiǎng)?wù)攉@獎(jiǎng)的概率;
(Ⅱ)上面條件下,現(xiàn)有甲、乙、丙、丁四人依次抽獎(jiǎng),抽后放回,另一個(gè)人再抽,用表示獲獎(jiǎng)的人數(shù),求的分布列及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

馬老師從課本上抄錄一個(gè)隨機(jī)變量X的概率分布律如下表
x
1
2
3
P(ε=x)
?
!
?
請(qǐng)小牛同學(xué)計(jì)算ε的數(shù)學(xué)期望,盡管“!”處無法完全看清,且兩個(gè)“?”處字跡模糊,但能肯定這兩個(gè)“?”處的數(shù)值相同.據(jù)此,小牛給出了正確答案E(ε)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

隨機(jī)變量ξ的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(ξ)=,則D(ξ)的值是(  )
(A)      (B)      (C)      (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩位射擊運(yùn)動(dòng)員,甲擊中環(huán)數(shù)X1B(10,0.9),乙擊中環(huán)數(shù)X2=2Y+1,其中YB(5,0.8),那么下列關(guān)于甲、乙兩運(yùn)動(dòng)員平均擊中環(huán)數(shù)的說法正確的是(  )
A.甲平均擊中的環(huán)數(shù)比乙平均擊中的環(huán)數(shù)多
B.乙平均擊中的環(huán)數(shù)比甲平均擊中的環(huán)數(shù)多
C.甲、乙兩人平均擊中的環(huán)數(shù)相等
D.僅依據(jù)上述數(shù)據(jù),無法判斷誰擊中的環(huán)數(shù)多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某人從標(biāo)有1、2、3、4的四張卡片中任意抽取兩張.約定如下:如果出現(xiàn)兩個(gè)偶數(shù)或兩個(gè)奇數(shù),就將兩數(shù)相加的和記為;如果出現(xiàn)一奇一偶,則將它們的差的絕對(duì)值記為,則隨機(jī)變量的數(shù)學(xué)期望為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)一隨機(jī)試驗(yàn)的結(jié)果只有A和,且P(A)=p令隨機(jī)變量X=,則X的方差V(X)等于________.

查看答案和解析>>

同步練習(xí)冊(cè)答案