若雙曲線
x2
a2
-
y2
b2
=1的一條漸近線與直線3x-y+1=0平行,則此雙曲線的離心率是( 。
A、
10
B、2
2
C、3
D、
3
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線
x2
a2
-
y2
b2
=1的一條漸近線與直線3x-y+1=0平行,得b=3a,再由雙曲線基本量的平方關(guān)系,得出a、c的關(guān)系式,結(jié)合離心率的定義,可得該雙曲線的離心率.
解答: 解:∵雙曲線的一條漸近線與直3x-y+1=0平行
∴雙曲線的漸近線方程為y=±3x
b
a
=3,得b=3a,c=
10
a
此時,離心率e=
c
a
=
10

故選:A.
點評:本題給出雙曲線的漸近線方程,求雙曲線的離心率,考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a4=4,(an+1-an-2)•(2an+1-an)=0(n∈N*),則a1的值小于4的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x•f(x)<0的解集為( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的是(  )
A、若函數(shù)lgf(x)為奇函數(shù),則函數(shù)f(x)為奇函數(shù)
B、若函數(shù)lgf(x)為偶函數(shù),則函數(shù)f(x)為偶函數(shù)
C、若函數(shù)sinf(x)為奇函數(shù),則函數(shù)f(x)為奇函數(shù)
D、若函數(shù)sinf(x)為偶函數(shù),則函數(shù)f(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cosx+x2,x∈(-
π
2
,
π
2
)
( 。
A、是奇函數(shù)且在(0,
π
2
)
上為減函數(shù)
B、是奇函數(shù)且在(0,
π
2
)
上為增函數(shù)
C、是偶函數(shù)且在(0,
π
2
)
上為減函數(shù)
D、是偶函數(shù)且在(0,
π
2
)
上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有下表關(guān)系
x 2 4 5 6 8
y 30 40 60 50 70
y與x的線性回歸方程為
y
=6.5x+a,當(dāng)廣告支出是3萬元時,則銷售額大約為( 。
A、36B、37C、39D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(ax-1)5=a0+a1x+a2x2+a3x3+a4x4+32x5,則二項式(ax-1)5展開后的各項系數(shù)之和為( 。
A、1B、-1C、2D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2i
i-1
的模是( 。
A、1
B、
2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圓O1和圓O2的半徑都等于1,|O1O2|=6,過動點P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點),使得|PM|=
3
|PN|.試建立平面直角坐標(biāo)系,并求動點P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案