|
|
若0<x1<x2<1,則
|
[ ] |
A. |
ex2-ex1>lnx2-lnx1
|
B. |
ex2-ex1<lnx2-lnx1
|
C. |
x2ex1>x1ex2
|
D. |
x2ex1<x1ex2
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
“x<0”是“ln(x+1)<0”的
|
[ ] |
A. |
充分不必要條件
|
B. |
必要不充分條件
|
C. |
充分必要條件
|
D. |
既不充分也不必要條件
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求拋物線C的方程;
(2)過(guò)F的直線l與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相交于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一個(gè)圓上,求直線l的方程.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
如圖,在平面直角坐標(biāo)系 xOy中,F1、F2分別是橢圓的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連結(jié)BF2交橢圓于點(diǎn)A,過(guò)點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連結(jié)F1C.
(1) 若點(diǎn)C的坐標(biāo)為(,),且BF2=,求橢圓的方程;
(2) 若F1C⊥AB,求橢圓離心率e的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是
|
[ ] |
A. |
f(x)=
|
B. |
f(x)=x2+1
|
C. |
f(x)=x3
|
D. |
f(x)=2-x
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
平面上以機(jī)器人在行進(jìn)中始終保持與點(diǎn)F(1,0)的距離和到直線x=-1的距離相等.若機(jī)器人接觸不到過(guò)點(diǎn)P(-1,0)且斜率為k的直線,則k的取值范圍是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=xcosx-sinx+1(x>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)記xi為f(x)的從小到大的第i(i∈N*)個(gè)零點(diǎn),證明:對(duì)一切n∈N*,有.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和.現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B.設(shè)甲、乙兩組的研發(fā)相互獨(dú)立.
(Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)120萬(wàn)元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)100萬(wàn)元.求該企業(yè)可獲利潤(rùn)的分布列和數(shù)學(xué)期望.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_(kāi)_______.
|
|
|
查看答案和解析>>