【題目】某電訊企業(yè)為了了解某地區(qū)居民對(duì)電訊服務(wù)質(zhì)量評(píng)價(jià)情況,隨機(jī)調(diào)查100 名用戶,根據(jù)這100名用戶對(duì)該電訊企業(yè)的評(píng)分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為,,…….
(1)估計(jì)該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分不低于70分的概率,并估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);
(2)現(xiàn)從評(píng)分在的調(diào)查用戶中隨機(jī)抽取2人,求2人評(píng)分都在的概率.
【答案】(1);77.14;(2).
【解析】
(1)由題意列出頻率分布表,求和即可估計(jì)該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分不低于70分的概率;利用中位數(shù)兩側(cè)的概率和相等列方程即可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);
(2)由題意計(jì)算出受調(diào)查用戶評(píng)分在、的人數(shù),求出總的基本事件個(gè)數(shù)及滿足要求的基本事件的個(gè)數(shù),由古典概型概率公式即可得解.
(1)由題意,該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分的頻率分布如下表:
評(píng)分 | ||||||
頻率 | 0.04 | 0.06 | 0.20 | 0.28 | 0.24 | 0.18 |
因此可估計(jì)評(píng)分不低于70分的概率為;
對(duì)該電訊企業(yè)評(píng)分的中位數(shù)設(shè)為x,可得,
則,
解得,
所以可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù)為;
(2)受調(diào)查用戶評(píng)分在的有人,
若編號(hào)依次為1,2,3,4,從中選2人的事件有、
、、、、,
共有個(gè)基本事件;
受調(diào)查用戶評(píng)分在的有人,
若編號(hào)依次為1,2,3,..9,10,從中選2人,
可得共有個(gè)基本事件;
因此2人評(píng)分都在的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點(diǎn), (為坐標(biāo)原點(diǎn))的面積為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),為左、右焦點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( )
①“x>1”是“x>2”的充分不必要條件;
②f(x)是其定義域上的可導(dǎo)函數(shù),“f'(x0)=0”是“y=f(x)在x0處有極值”的充要條件;
③命題“若a>b,則2a>2b﹣1”的否命題為“若a≤b,則2a≤2b﹣1”;
④若“p且q”為假命題,則p、q均為假命題.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于和之間,將測(cè)量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn),、兩點(diǎn)分別是橢圓的上、下頂點(diǎn),是等腰直角三角形,延長(zhǎng)交橢圓于點(diǎn),且的周長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于、的動(dòng)點(diǎn),直線、與直線分別相交于、兩點(diǎn),點(diǎn),試問(wèn):外接圓是否恒過(guò)軸上的定點(diǎn)(異于點(diǎn))?若是,求該定點(diǎn)坐標(biāo);若否,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)為,,點(diǎn)在橢圓上,且面積的最大值為,周長(zhǎng)為6.
(1)求橢圓的方程,并求橢圓的離心率;
(2)已知直線:與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得與中點(diǎn)的連線與直線垂直,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐的底面是邊長(zhǎng)為3的等邊三角形,側(cè)棱設(shè)點(diǎn)M,N分別為PC,BC的中點(diǎn).
(Ⅰ)求證:BC⊥面AMN;
(Ⅱ)求直線AP與平面AMN所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:()的準(zhǔn)線與x軸交于點(diǎn)A,點(diǎn)在拋物線C上.
(1)求C的方程;
(2)過(guò)點(diǎn)M作直線l,交拋物線C于另一點(diǎn)N,若的面積為,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com