精英家教網 > 高中數學 > 題目詳情
已知f(x)是定義域上的減函數,則滿足f()>f(1)的x的取值范圍為    
【答案】分析:利用函數單調性的定義,結合解分式不等式即可.
解答:解:∵f()>f(1)且f(x)是定義域上的減函數
<1,即<0,
∴x(1-x)<0
∴x>1或x<0.
故x的取值范圍為(-∞,0)∪(1,+∞)
點評:本題考查函數單調性的定義與簡單應用,以及簡單分式不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義域在R上的奇函數,若f(x)的最小正周期為3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的奇函數,f(-4)=-2,f(x)的導函數f′(x)的圖象如圖所示,若兩正數a,b滿足f(a+2b)<2,則
a+4
b+4
的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的偶函數,若f(x+2)=f(x),且當x∈[1,2]時,f(x)=x2+2x-1,那么f(x)在[0,1]上的表達式是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的奇函數,且在(0,+∞)內有1003個零點,則f(x)的零點的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義域為R的偶函數,若f(x)的最小正周期是2,且當 x∈[1,2]時,f(x)=x2-2x-1,那么f(x)在[0,1]上的表達式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步練習冊答案