【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.

(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(1)若花店一天購(gòu)進(jìn)17枝玫瑰花, 表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;

(2)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,以利潤(rùn)角度看,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝好還是17枝好?請(qǐng)說(shuō)明理由.

【答案】(Ⅰ) ;(Ⅱ)(1)答案見(jiàn)解析;(2)應(yīng)購(gòu)進(jìn)17枝,理由見(jiàn)解析.

【解析】試題分析:

(Ⅰ)根據(jù)題意將問(wèn)題用分段函數(shù)的形式表示出來(lái)即可.(Ⅱ)(1) 由題意得的所有可能取值,并求出每個(gè)取值的概率,列成表格的形式可得分布列,然后可求得期望;(2)由題意得當(dāng)購(gòu)進(jìn)16枝玫瑰花時(shí),當(dāng)天的利潤(rùn)為,然后與(1作比較后可得結(jié)論

試題解析:

(Ⅰ)當(dāng)日需求量時(shí),可得利潤(rùn);

當(dāng)日需求量時(shí),可得利潤(rùn),

綜上可得關(guān)于的解析式為;

(Ⅱ)(1)由題意得的所有可能取值為55,65,75,85,

,

,

∴隨機(jī)變量的分布列為:

.

(2)由題意得當(dāng)購(gòu)進(jìn)16枝玫瑰花時(shí),當(dāng)天的利潤(rùn)為

,

,

∴應(yīng)購(gòu)進(jìn)17枝玫瑰花.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC

BDGC成異面直線且?jiàn)A角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí)可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).

(1)X的分布列;

(2)若要求P(Xn)0.5,確定n的最小值;

(3)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),n19n20之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)S是實(shí)數(shù)集R的非空子集,若對(duì)任意x,yS,都有xy,xy,xyS,則稱S為封閉集.下列命題:①集合S={ab|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無(wú)限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店.為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬(wàn)元)

2.5

3

4

4.5

6

(Ⅰ)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(Ⅱ)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分店,才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

參考公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在上的偶函數(shù), ,都有,且當(dāng)時(shí), ,若函數(shù))在區(qū)間內(nèi)恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,2017年雙11全天交易額達(dá)到1682億元,為規(guī)范和評(píng)估該行業(yè)的情況,相關(guān)管理部門(mén)制定出針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行評(píng)價(jià),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.

(1)完成關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全為好評(píng)的次數(shù)為隨機(jī)變量

①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)的分布列;

②求的數(shù)學(xué)期望和方差.

附:臨界值表:

的觀測(cè)值: (其中

關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 為自然對(duì)數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;

2)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, , 是線段的中點(diǎn),且 平面

(Ⅰ)求證:平面平面;

(Ⅱ)求證: 平面;

(Ⅲ)若, ,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案