在△ABC中,M是BC中點,AM=1,點P在AM上且滿足
PA
=-3
PM
,則
PA
•(
PB
+
PC
)=
-
3
8
-
3
8
分析:由AM=1,點P在AM上且滿足
PA
=-3
PM
,可得|
PM
|=
1
4
|
AM
|=
1
4
.利用向量平行四邊形法則可得
PB
+
PC
=2
PM
,于是
PA
•(
PB
+
PC
)=
PA
•2
PM
=-6
PM
2
即可得出.
解答:解:∵AM=1,點P在AM上且滿足
PA
=-3
PM
,∴|
PM
|=
1
4
|
AM
|=
1
4

PB
+
PC
=2
PM
,∴
PA
•(
PB
+
PC
)=
PA
•2
PM
=-6
PM
2
=-6×(
1
4
)2
=-
3
8

故答案為-
3
8
點評:熟練掌握向量的線性運算和平行四邊形法則、數(shù)量積運算等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,M是BC邊靠近B點的三等分點,若
AB
=a,
AC
=b
,則
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個命題:
①把y=2cos(3x+
π
6
)的圖象上每點的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉淼?span id="e1qqy8d" class="MathJye">
3
2
倍,再把圖象向右平移
π
2
單位,所得圖象解析式為y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點,AM=3,點P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
 )
等于-4.
④函數(shù)f(x)=xsinx在區(qū)間[0,
π
2
]
上單調(diào)遞增,函數(shù)f(x)在區(qū)間[-
π
2
,0]
上單調(diào)遞減.
其中是真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆甘肅省天水市三中高三第六次檢測數(shù)學(xué)文卷 題型:單選題

在△ABC中,M是BC的中點,AM=1,點P在AM上且滿足=2,則·( + )等于

A.-B.-C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林一中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知下列四個命題:
①把y=2cos(3x+)的圖象上每點的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172249216932598/SYS201311031722492169325010_ST/1.png">倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點,AM=3,點P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省金華市艾青中學(xué)高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:選擇題

已知下列四個命題:
①把y=2cos(3x+)的圖象上每點的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125004834604222/SYS201310251250048346042008_ST/1.png">倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點,AM=3,點P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

同步練習(xí)冊答案