1.定義2×2矩陣$(\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array})$=a1a4-a2a3,則函數(shù)f(x)=$(\begin{array}{l}{{x}^{2}-x}&{1}\\{x}&{\frac{x}{3}}\end{array})$的圖象在點(1,-1)處的切線方程是2x+3y+1=0.

分析 利用新定義,求出函數(shù)解析式,再求導數(shù),確定切線的斜率,即可得出結論.

解答 解:由題意,f(x)=$\frac{1}{3}{x}^{3}-\frac{1}{3}{x}^{2}-x$,
∴f′(x)=${x}^{2}-\frac{2}{3}x-1$,
∴f′(1)=-$\frac{2}{3}$,
∵f(1)=-1,
∴函數(shù)f(x)=$(\begin{array}{l}{{x}^{2}-x}&{1}\\{x}&{\frac{x}{3}}\end{array})$的圖象在點(1,-1)處的切線方程是2x+3y+1=0,
故答案為2x+3y+1=0.

點評 本題考查導數(shù)的幾何意義,新定義的應用,考查學生的計算能力,確定函數(shù)的解析式是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.某校舉行“青少年禁毒”知識競賽網(wǎng)上答題,高二年級共有500名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了100名學生的成績進行統(tǒng)計.請你解答下列問題:
(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績不低于90分的學生就能獲獎,問所有參賽學生中獲獎的學生約為多少人?
分組頻數(shù)頻率
[60,70)100.1
[70,80)220.22
[80,90)a0.38
[90,100]30c
合計100d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{4}+{log_4}x,x≥1\\{2^{-x}}-\frac{1}{4},x<1\end{array}$.
(Ⅰ)證明:f(x)≥$\frac{1}{4}$;
(Ⅱ)若f(x0)=$\frac{3}{4}$,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(3,-4),$\overrightarrow$=(2,t),向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-3,則t=$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\overrightarrow{a}$=(2,λ),$\overrightarrow$=(-4,10),且$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)λ的值為( 。
A.-5B.5C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的首項a1=2,且an=2an-1-1(n∈N*,N≥2)
(1)求證:數(shù)列{an-1}為等比數(shù)列;并求數(shù)列{an}的通項公式;
(2)求數(shù)列{n•an-n}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知兩條不同的直線m,n與兩個不重合的平面α,β,給出下列四個命題:
①若m∥α,n∥α,則m∥n;   ②若m⊥α,n⊥α,則m∥n;
③若m∥α,m⊥β,則α⊥β; ④若m⊥α,n⊥β,m∥n,則α∥β;
其中真命題的是②③④.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x-1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log${\;}_{\frac{1}{3}}}$x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+t•h(3x)=0在x∈[3,9]上有解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x>1時,f(x-1)≤$\frac{lnx}{x+1}$恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案