科目:高中數學 來源: 題型:
(06年江西卷理)(12分)
如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點
(1)求點P的軌跡H的方程
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點
(1) 求點P的軌跡H的方程
(2) 在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?
查看答案和解析>>
科目:高中數學 來源:2010-2011學年浙江省杭州市高三第二次教學質量考試數學理卷 題型:解答題
(本題滿分14分)
如圖1,在平面內,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(圖2).
(Ⅰ) 設二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;
(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關系式,并證明:當0 < BE < a時,恒有< 1.
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉動,并且交橢圓于A、B兩點,P是線段AB的中點
(1) 求點P的軌跡H的方程
(2) 在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£),確定q的值,使原點距橢圓的右準線l最遠,此時,設l與x軸交點為D,當直線m繞點F轉動到什么位置時,三角形ABD的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分14分)
如圖1,在平面內,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(圖2).
(Ⅰ) 設二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;
(第20題–1)
(第20題–2)
(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關系式,并證明:當0 < BE < a時,恒有< 1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com