已知=(1,1),=(-1,2),以、為邊作平行四邊形OACB,則的夾角為__________.

arccos

解析:∵=+=(0,3),

=-=(-2,1),

∴cos<,>=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<1,函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R).
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個解,求t的值;
(2)當(dāng)t=-1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2+2t+1在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市誠賢中學(xué)高三(上)第二次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

已知(1+n展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x)…an(x),an+1(x).設(shè)F(x)=a1(x)+2a2(x)+2a2(x)+3a3(x)…+nan(x)+(n+1)an+1(x).
(1)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(2)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省孝感高中高三(上)7月綜合測試數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年《龍門亮劍》高三數(shù)學(xué)(文科)一輪復(fù)習(xí):第2章第2節(jié)(人教AB通用)(解析版) 題型:解答題

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案