已知函數(shù),其中
。
(1)若函數(shù)有極值
,求
的值;
(2)若函數(shù)在區(qū)間
上為增函數(shù),求
的取值范圍;
(3)證明:
(1)a=1,(2)(3)構(gòu)造函數(shù),然后利用導(dǎo)數(shù)判斷單調(diào)性,利用單調(diào)性證明不等式
解析試題分析:(1),
①當(dāng)時(shí),
,
單調(diào)遞減,且無(wú)極值
②當(dāng)時(shí),令
,得
,當(dāng)
變化時(shí),
與
的變化情況如下:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ↘ | 極小值 | ↗ |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若曲線在
和
處的切線互相平行,求
的值及函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意
,均存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
.(其中
為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線在
處的切線與直線
垂直,求
的值;
(2)若對(duì)于任意實(shí)數(shù)≥0,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),是否存在實(shí)數(shù)
,使曲線C:
在點(diǎn)
處的切線與
軸垂直?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)
的單調(diào)性;
(3)斜率為的直線與曲線
交于
,
兩點(diǎn),求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)若x=1時(shí)取得極值,求實(shí)數(shù)
的值;
(2)當(dāng)時(shí),求
在
上的最小值;
(3)若對(duì)任意,直線
都不是曲線
的切線,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),求
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),若存在
使得
恒成立,則稱
是
的
一個(gè)“下界函數(shù)” .
(I)如果函數(shù)(t為實(shí)數(shù))為
的一個(gè)“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問(wèn)函數(shù)
是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);
若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com