【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣2,2]
B.
C.
D.

【答案】A
【解析】解:根據(jù)題意,函數(shù)f(x)= 的圖象如圖:

令g(x)=| +a|,其圖象與x軸相交與點(﹣2a,0),
在區(qū)間(﹣∞,﹣2a)上為減函數(shù),在(﹣2a,+∞)為增函數(shù),
若不等式f(x)≥| +a|在R上恒成立,則函數(shù)f(x)的圖象在
g(x)上的上方或相交,
則必有f(0)≥g(0),
即2≥|a|,
解可得﹣2≤a≤2,
故選:A.
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關(guān)知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐P﹣ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點, =3

(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點( ,1),離心率為 ,直線l:y=k(x+1)與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)在x軸上是否存在點M,使 + 是與k無關(guān)的常數(shù)?若存在,求出點M的坐標(biāo),并求出此常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,武漢市出現(xiàn)了非常嚴(yán)重的霧霾天氣,而燃放煙花爆竹會加重霧霾,是否應(yīng)該全面禁放煙花爆竹已成為人們議論的一個話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對400位老年人和中青年市民進(jìn)行了隨機問卷調(diào)查,結(jié)果如下表:

贊成禁放

不贊成禁放

合計

老年人

60

140

200

中青年人

80

120

200

合計

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握認(rèn)為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關(guān)?請說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再從這13人中隨機的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費的情況.假設(shè)一位老年人花費500元,一位中青年人花費1000元,用X表示它們在煙花爆竹上消費的總費用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={1,2,6},B={2,4},C={1,2,3,4},則(A∪B)∩C=(  )
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求異面直線AP與BC所成角的余弦值;
(II)求證:PD⊥平面PBC;
(II)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是單調(diào)遞增的函數(shù)是(
A.y=﹣
B.y=3x﹣3x
C.y=x|x|
D.y=x3﹣x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =( sinx,sinx), =(cosx,sinx),x∈(0, ).
(1)若| |=| |,求x的值;
(2)設(shè)函數(shù)f(x)= ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C經(jīng)過點A(2,3)、B(4,0),對稱軸為坐標(biāo)軸,焦點F1、F2在x軸上.
(1)求橢圓C的方程;
(2)求∠F1AF2的角平分線所在的直線l與橢圓C的另一個交點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案