15.過點(diǎn)P(-4,0)作函數(shù)y=$\sqrt{4-{x}^{2}}$的切線l,則切線l的方程為( 。
A.y=$\sqrt{3}$(x+4)B.y=$\frac{\sqrt{3}}{3}$(x+4)C.y=$\frac{\sqrt{2}}{2}$(x+4)D.y=$\sqrt{2}$(x+4)

分析 設(shè)切線方程為y=k(x+4)(k>0),函數(shù)y=$\sqrt{4-{x}^{2}}$表示以原點(diǎn)為圓心,2為半徑的上半圓,利用圓心到直線的距離d=$\frac{|4k|}{\sqrt{{k}^{2}+1}}$=2,求出k,即可得出結(jié)論.

解答 解:設(shè)切線方程為y=k(x+4)(k>0),
函數(shù)y=$\sqrt{4-{x}^{2}}$表示以原點(diǎn)為圓心,2為半徑的上半圓,
圓心到直線的距離d=$\frac{|4k|}{\sqrt{{k}^{2}+1}}$=2,∴k=$\frac{\sqrt{3}}{3}$,
∴切線l的方程為y=$\frac{\sqrt{3}}{3}$(x+4),
故選B.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在$\widehat{NM}$上,∠MON=$\frac{π}{6}$,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.

(Ⅰ)用含θ的式子表示DC,OB的長‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢?(精確到0.01)
(參考數(shù)據(jù):$\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0),q:2<x≤3.若p是q的必要不充分條件,則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓的半徑為2$\sqrt{3}$,圓心在y=2x上,且圓被直線x-y=0截得的弦長為4,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{log2an}的前10項(xiàng)和等于( 。
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知直線l:ax+(a2-2)y+3=0與直線m:x-y-1=0互相垂直,其中a>0.
(1)求直線l的方程;
(2)點(diǎn)P坐標(biāo)為(3,-1),求過點(diǎn)P與直線l平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于常數(shù)m、n,“mn<0”是“方程mx2+ny2=10的曲線是雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知AD為△ABC邊BC的中線,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,則$|{\overrightarrow{AD}}|$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P是銳角△ABC所在平面內(nèi)的動(dòng)點(diǎn),且滿足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,給出下列四個(gè)命題:
①點(diǎn)P的軌跡是一條直線;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在點(diǎn)P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
則其中真命題的序號(hào)為( 。
A.①②B.③④C.①②④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案