20.有一批材料可以建成80m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的小矩形(如圖所示),且圍墻厚度不計,則圍成的矩形的最大面積為(  )
A.200m2B.360m2C.400m2D.480m2

分析 設(shè)每個小矩形長為x,寬為y,根據(jù)題意有4x+3y=80,(0<x<20),由矩形面積公式可得S=3xy=$\frac{(4x)(3y)}{4}$,由基本不等式分析計算可得S的最大值,即可得答案.

解答 解:設(shè)每個小矩形長為x,寬為y,
則有4x+3y=80,(0<x<20)
圍成的矩形的面積S=3xy=$\frac{(4x)(3y)}{4}$≤$\frac{1}{4}$[$\frac{(4x)+(3y)}{2}$]2=400,當(dāng)且僅當(dāng)4x=3y=40時,等號成立,
即圍成的矩形的最大面積為400m2,
故選:C.

點評 本題考查基本不等式在最值問題中的應(yīng)用,根據(jù)題意,設(shè)出自變量,將實際問題轉(zhuǎn)化為函數(shù)模型是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有2個紅球和4個白球的袋中無放回地取出2個球,當(dāng)兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達(dá)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,三角形ABC為等腰直角三角形,AC=BC=$\sqrt{2}$,AA1=1,點D是AB的中點.
(1)求證:AC1∥平面CDB1
(2)二面角B1-CD-B的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=mx3+nx(x∈R).若函數(shù)f(x)的圖象在點x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),(x<1)}\\{{2}^{x-1},(x≥1)}\end{array}\right.$,則f(-6)+f(log212)的值為( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四邊形ABCD中,$\overrightarrow{AB}$=(2,-2),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(1,$\frac{7}{2}$).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x,y之間的關(guān)系式;
(2)滿足(1)的同時又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓C的圓心在x軸上,且經(jīng)過A(5,2),B(-1,4)兩點,則圓C的方程是( 。
A.(x+2)2+y2=17B.(x-2)2+y2=13C.(x-1)2+y2=20D.(x+1)2+y2=40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一條漸近線過點(1,-1),則E的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)系正確的是( 。
A.{1}∈{1,2,3}B.{1}?{1,2,3}C.{1}?{1,2,3}D.{1}={1,2,3}

查看答案和解析>>

同步練習(xí)冊答案