已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b都是大于1的正整數(shù),且

(1)求a的值;

    (2)若對(duì)于任意的,總存在,使得成立,求b的值;

    (3)令,問(wèn)數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

(1)2(2)5(3)當(dāng)時(shí),不存在連續(xù)三項(xiàng)成等比數(shù)列;當(dāng)時(shí),數(shù)列中的第二、三、四項(xiàng)成等比數(shù)列,這三項(xiàng)依次是18,30,50.


解析:

(1)由已知,得.由,得

a,b都為大于1的正整數(shù),故a≥2.又,故b≥3.再由,得   

,故,即

b≥3,故,解得.  于是,根據(jù),可得

(2)由,對(duì)于任意的,均存在,使得,則

,由數(shù)的整除性,得b是5的約數(shù).

,b=5.

所以b=5時(shí),存在正自然數(shù)滿足題意.

(3)設(shè)數(shù)列中,成等比數(shù)列,由,,得

化簡(jiǎn),得.     (※)  

當(dāng)時(shí),時(shí),等式(※)成立,而,不成立.

當(dāng)時(shí),時(shí),等式(※)成立.當(dāng)時(shí),,這與b≥3矛盾.

這時(shí)等式(※)不成立.

綜上所述,當(dāng)時(shí),不存在連續(xù)三項(xiàng)成等比數(shù)列;當(dāng)時(shí),數(shù)列中的第二、三、四項(xiàng)成等比數(shù)列,這三項(xiàng)依次是18,30,50.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年濰坊市二模)(14分)已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

  (1)求a的值;

 。2)若對(duì)于任意,總存在,使,求b的值;

  (3)在(2)中,記是所有中滿足, 的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

 。1)求a的值;

 。2)若對(duì)于任意,總存在,使,求b的值;

 。3)在(2)中,記是所有中滿足, 的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西南昌10所省高三第二次模擬突破沖刺文科數(shù)學(xué)(二)(解析版) 題型:填空題

已知等差數(shù)列的首項(xiàng)為,公差為,其前項(xiàng)和為,若直線與圓的兩個(gè)交點(diǎn)關(guān)于直線對(duì)稱,則=          

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b均為正整數(shù),若。

(1)求、的通項(xiàng)公式;

(2)若成等比數(shù)列,求數(shù)列的通項(xiàng)公式。

(3)設(shè)的前n項(xiàng)和為,求當(dāng)最大時(shí),n的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省山實(shí)驗(yàn)高高三期考試文科數(shù)學(xué)卷 題型:填空題

已知等差數(shù)列的首項(xiàng)為24,公差為,則當(dāng)n=        時(shí),該數(shù)列的前n項(xiàng)

取得最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案