分析:先根據(jù)對數(shù)函數(shù)的真數(shù)大于零求定義域,再把復(fù)合函數(shù)分成二次函數(shù)和對數(shù)函數(shù),分別在定義域內(nèi)判斷兩個基本初等函數(shù)的單調(diào)性,再由“同增異減”求原函數(shù)的遞增區(qū)間.
解答:解:要使函數(shù)有意義,則3-2x-x
2>0,解得-3<x<1,故函數(shù)的定義域是(-3,1),
令t=-x
2-2x+3,則函數(shù)t在(-3,-1)上遞增,在[-1,1)上遞減,
又因函數(shù)y=
t在定義域上單調(diào)遞減,
故由復(fù)合函數(shù)的單調(diào)性知
f(x)=log(3-2x-x2)的單調(diào)遞增區(qū)間是[-1,1).
故答案為:[-1,1).
點(diǎn)評:本題的考點(diǎn)是復(fù)合函數(shù)的單調(diào)性,對于對數(shù)函數(shù)需要先求出定義域,這也是容易出錯的地方;再把原函數(shù)分成幾個基本初等函數(shù)分別判斷單調(diào)性,再利用“同增異減”求原函數(shù)的單調(diào)性.